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Abstract. Redundancy management of a technical system involves a monitoring procedure (con-

trol of the current state of its components) to reconfigure the system as needed. Consisting of four 

parts, this survey presents modern and newly developed technical condition monitoring methods 

for redundancy management. Part I was devoted to a general description of built-in control, vot-

ing schemes, and fidelity rules; control codes and program execution control methods were brief-

ly covered. Part II of the survey considers fault diagnosis methods based on the classical model-

ing of the system diagnosed in the discrete time and frequency domains. The Chow–Willsky fault 

detection scheme, as well as the definition of a residual and its generation procedures in the diag-

nosis problem, are presented. The main model-based diagnosis methods using equation errors, 

observers, parity equations, and redundant variables are described. In conclusion, the robustness 

problem of diagnosis methods of the corresponding type is briefly discussed. 
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Mathematical model-based fault diagnosis meth-

ods
1
 detect a mismatch between the real measurements 

of input and output signals of a system (on the one 

hand) and the corresponding signals of its mathemati-

cal model (on the other), expressed by the so-called 

residual. These methods started to be actively devel-

oped in the 1970s. In particular, static or parallel re-

dundancy schemes [1, 2] were applied, which can be 

obtained directly from measurements (hardware re-

dundancy) or analytical relations (analytical redundan-

cy). Such methods were reviewed in [3–5]. 

                                                           
1 In this context, we mean only analytical modeling in the “classi-

cal” setting: the central link is the reproduction (with certain level 

of detail) of the operation laws of a system diagnosed; approaches 

with other types of models will be presented in parts III and IV of 

the survey. 

In part II of the survey, we highlight the methods 

commonly used in fault diagnosis systems of various-

purpose complex technical systems. Their primary 

indisputable advantage is engineering transparency, 

i.e., the intuitive clarity of the processes and causal 

relations for experts in the corresponding technical 

field. The effectiveness of the methods under consid-

eration depends on particular conditions of applica-

tion, and their choice is determined by the following 

factors: the functional purpose of the device, its struc-

tural organization and technological features of manu-

facturing and operation, and the required reliability 

and fidelity indicators. 

 

Figure 1 shows the Chow–Willsky scheme [4], 

which generalizes most fault detection methods for a 

system with actuators, an object, and sensors. 
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The real-time fault detection scheme includes two 

main blocks: 

 Residual generation: a signal called the residual 

is formed by using the input and output signals of a 

monitored process. This residual should be independ-

ent of the input and output signals and should take a 

value equal to/close to 0 in the absence of faults.  

 Residual estimation: the value of the residual is 

analyzed, and the presence or absence of a fault is de-

cided accordingly. 

 
 

 
 

 
Fig. 1. The Chow–Willsky scheme.  

 

Decision rules involve simple tolerance control or 

complex signal transformation methods, including sta-

tistical analysis.  

In this case, the main attention of researchers is fo-

cused on residual generation since residual estimation 

procedures are largely universal. 

 
 

 
 

 
Fig. 2. The fault topology of a dynamic system. 

 

Figure 2 explains the topology of faults affecting 

the system operation, with the following notation: v  is 

an external input (disturbance); u  is a control input 

applied to the object; y  is the output signal of the ob-

ject; u  and y  are measured signals (available for 

processing); 
аf , 

o ,f  
uf , and yf  are formalized repre-

sentations of faults occurring in actuators, the object, 

and sensors of object’s input and output signals, re-

spectively. Only the signals v , u , and y  are known 

with some accuracy. 

Despite the nonlinearity of most real systems mon-

itored, modeling and identification methods for linear 

systems are often used to avoid the difficulties inher-

ent in nonlinear models. In most cases, this is not a 

significant limitation since the dynamic system is 

monitored in the neighborhood of an expected opera-

tion mode, and deviations from the mode are described 

well by linear models. 

 

1.1. Description of Analytical Models 

According to the linearity hypothesis of a dynamic 

process, its behavior in discrete time 0, 1, 2,t   is 

described by the state-space model [6–10] 

1t t tx Ax Bu   ,  
t ty Cx ,                  (1) 

where 
n

tx   is the state vector of the system; 
r

tu   is the vector of true input signals; 
m

ty   is 

the vector of true output signals; A , B , and C  are 

the numerical matrices of system coefficients. 

The effect of faults on the object is described by 

the model  

1 .t t t ab tx Ax Bu f    ,  
.t t c ty Cx f  ,         (2) 

where .ab t t tf Ax Bu     and .c t tf Cx  ; A , B , 

and C  are the variations of the coefficient matrices 

due to the occurred faults. (The fault vector 
of  is rep-

resented by two vectors 
.ab tf  and 

.c tf , associated with 

time instant t ). Sometimes faults are treated different-

ly: 
.ab t t tf A x B u     and 

.c t tf y  , where 
tx  is an 

external disturbance for internal variables; 
tu  is ac-

tuator errors (faults); 
ty  is sensor errors (faults).  

State-space descriptions provide general and math-

ematically rigorous tools for modeling the system and 

robustly generating uncertainties in both the determin-

istic and stochastic cases (measurements without noise 

and noisy measurements, respectively). Therefore, the 

system matrices A, B, and C in canonical form for 

models (1) and (2) can be obtained using multivariate 

identification procedures.  

The input and output measurements are affected by 

faults according to the formulas 

.t t u tu u f   , .t t y ty y f   , 

where 
tu  and 

ty  are the measured values of the input 

and output signals. 

Typically, step and ramp (gradient) signals are 

used to model sudden and evolving faults, represent-

ing a displacement (a fixed change during one time 
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instant) and a drift (monotonic changes on a sequence 

of time instants), respectively. 

Measurement noise affecting sensor output signals 

is often described by uncorrelated Gaussian processes.  

The general model-based fault detection (FD) 

problem can be solved only with knowledge of the 

measured sequences 
tu  and 

ty . In addition, a priori 

knowledge of the characteristics of the received sig-

nals 
tu  and 

ty  is widely used. Examples include the 

spectrum, dynamic range of the signal, and its varia-

tions. However, the need for a priori information about 

the signals monitored and the dependence of the signal 

characteristics on the unknown conditions of the sys-

tem diagnosed are the main drawbacks of this class of 

methods.  

Along with models (1) and (2), the operation of a 

system diagnosed can be described by frequency-

domain models of the form  

( ) ( )u u

t y t y ty W z u W z u  ,                  (3) 

where z  is the forward shift operator (one time instant 

ahead)
2
; ( )u

yW z  is the transfer (rational polynomial) 

matrix relating the input 
tu  to the system output 

ty ; 

( )u

yW z  is the variation of the transfer matrix ( )u

yW z  

due to faults. 

As a rule, model (3) is applied under known fre-

quency characteristics of faults and disturbances: in-

formation in frequency spectra can be used as criteria 

for fault detection. 

 

1.2. Residual Generation 

The general structure of a residual generator [11, 

12] is demonstrated in Fig. 3. Here, tz  is an auxiliary 

signal (as a rule, meaningful for the developer, e.g., 

the state vector of the system or its parts); 
tr  is the re-

sidual signal; 
1( , )t tW u y  and 

2 ( , )t tW z y  are the main 

blocks of the generator.  

 
 

 

 
Fig. 3. The general structure of a residual generator. 

 

Regardless of the method applied, residual genera-

tion is nothing but a linear mapping with the inputs 

consisting of the inputs and outputs of the process 

                                                           
2 Such an interpretation ignores the initial conditions of the model. 

An alternative is to treat the operator as the z-transform, thereby 

considering the initial conditions. 

monitored. In the normal condition (no fault), the 

equality 0tr   holds. 

The simplest residual generator is obtained when 

the transfer matrix 
1W  coincides with model (3) of the 

object: 
1( , ) ( )u

t t yW u y W z . In other words, this is a 

real process description yielded by a system identifica-

tion procedure (e.g., an autoregressive exogenous 

model [13]). 

The simplest, and most widespread, fault detection 

method is to compare the residual 
tr  or its some func-

tion ( )tJ r  with a fixed threshold   or a threshold 

function 
t  as follows: 

for 0
( )

for 0,

t t

t

t t

f
J r

f

  
 

  
                   (4) 

where 
tf  is the generalized fault vector. Thus, if the 

residual exceeds a fixed threshold, a fault is declared. 

Such a test is particularly effective with fixed 

thresholds ε if the object operates predominantly in a 

steady state. It responds after either a sudden large 

fault or a persistent, gradually increasing fault. 

In most practical cases, process parameters are 

completely unknown or known with insufficient accu-

racy. Then they can be determined using parameter 

estimation methods by measuring the input and output 

signals 
tu  and 

ty  if the main structure of the model is 

known. 

 

For a Single Input, Single Output (SISO) object, 

the discrete-time model of order n is written in the 

vector form 
T

ty   , 

where  
T

1 1n na a b b   denotes the 

vector of object’s parameters;  
T

1t t ny u    is 

the vector of discrete-time sample data at n  consecu-

tive time instants (measurement points). 

The error signal is given by 

T ˆ
t te y   , 

where ̂  is the vector of parameter estimates. Based 

on the equations 

2 Tˆ( ) t

t

J e e e   , 
ˆ( )

0
ˆ

dJ

d





, 

the least-squares estimates of the parameters are de-

termined by the formula  

T 1 Tˆ ( )t ty     .                       (5) 
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As described in [14–16], the estimates (5) can also 

be computed using the recurrent
3
 least-squares algo-

rithm in real time 0, 1, 2,t   with respect to the 

estimates at time instant t: 

 T

1 1 1
ˆ ˆ ˆ

t t t t t ty        , 

where 

T 1

1 1 1( 1)t t t t t tP P

        , 
T

1 2 1( )t n t t tP I P     , 

and 
2nI  stands for an identity matrix of dimensions 

2 2n n . The initial conditions 
0P  for the matrix 

tP is 

either the identity matrix or a supposed covariance 

matrix of the initial errors of the estimates 0̂ .  

It is possible to improve convergence using filter-

ing methods. In particular, a Kalman filter can be ap-

plied for parameter estimation in the case of noisy 

measurements [17, 18]. 

Fault diagnosis is performed by the difference be-

tween the vector ˆ
t  of parameter estimates and its 

“reference” values, corresponding either to the ab-

sence or presence of definite faults in the system. For 

this purpose, one may employ the approaches de-

scribed earlier; see Section 5 in part I of the survey 

[19]. 

 

The principal idea of observer/filter-based methods 

is to estimate the system outputs from measurements 

using Lüenberger observers (in the deterministic case) 

or Kalman filters (in the presence of random noises). 

The output estimation error (or its weighted value) is 

used as a residual. 

Note that in the case of observer-based fault diag-

nosis, the outputs must be estimated and the estimation 

of the state vector is often not required [20]. In addi-

tion, the advantage of an observer is the flexible 

choice of its gains, which leads to a rich variety of 

fault diagnosis schemes [21–30]. 

In the linear dynamic model (1) with exactly known 

matrices A , B , and C , the variables are restored us-

ing the observer  

1
ˆ ˆ
t t t tx Ax Bu He    , ˆ

t t te y Cx  ,         (6) 

where ˆ n

tx   denotes the state vector estimate; 

m

te   is the output error. At the same time, the state 

error 
x n

te   satisfies the equations 

ˆx

t t te x x  ,     1 ( )x x

t te A HC e   , 

                                                           
3 In programming, the equivalent term “recursive” is used. 

asymptotically vanishing if the matrix A HC  is sta-

ble. 

In the presence of disturbances and faults, we have 

the equations 

1 1t t t t tx Ax Bu Qv L f     , 
2t t t ty Cx Rw L f   ,  

where 
tv  is the unmeasured vector of input disturb-

ances; 
tw  is the unmeasured vector of output disturb-

ances; 
tf  is the reduced vector of faults additively 

affecting the object’s operation; Q  and R  are dis-

turbance effect matrices; 1L  and 2L  are fault effect 

matrices. 

Under the conditions 0tv   and 0tw  , the state 

estimate satisfies the equations 

1 1 2( )x x

t t t te A HC e L f HL f     , 

2

x

t t te Ce L f  , 

which describe the effect of the generalized faults 
tf  

on the errors 
x

te  and 
te , taken as residuals. The matrix 

H  influences the properties of the residuals. The re-

quirements for choosing H  are stability and sensitivi-

ty to the disturbances 
tv  and 

tw . If the signals are sub-

jected to noises, a Kalman filter [17] should be used 

instead of classical observations. 

If faults manifest themselves in the form of param-

eter variations A  or B , the process behavior is 

described by 

1 ( ) ( )t t tx A A x B B u       , t ty Cx , 

and the estimation errors are written as 

1 ( )x x

t t t te A HC e Ax Bu     , 
x

t te Ce . 

In this case, the variations A  and B  are multi-

plicative errors, and the changes in errors depend on 

both parameter variations and changes in the input and 

state variables. Therefore, the effect of parameter vari-

ations on errors is less unambiguous than in the case 

of additive faults 
tf . Particular solutions can be found 

in [14, 25]. 

For Multiple Input, Multiple Output (MIMO) pro-

cesses, the following decomposition is applied: either 

a single observer excited by a single output [26], or a 

bank of observers excited by all outputs with hypothe-

sis testing [27], or a bank of observers excited by ei-

ther separate outputs [26] or all outputs except one 

[28, 29]. This approach allows detecting faults of dif-

ferent combinations of sensors. 

In the MIMO case, the gain matrix H of the state 

observer in equation (6) is chosen so that fault signals 

1 tL f  change in a definite direction and fault signals 

2 tL f  in a definite plane [29, 31]. 
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In the presence of directional residual vectors, the 

fault isolation problem is reduced to determining the 

nearest fault signature direction for the residual vector. 

The original form of a “fault detection filter” was pro-

posed by R. Beard [31] and H. Jones [32] for generat-

ing directional residual vectors.  

Subsequently, many simpler methods were pro-

posed, including a “robust fault detection filter” [33]. 

It represents a class of Lüenberger observers with a 

special feedback gain matrix. Another possibility is to 

use output observers or the so-called generalized ob-

servers, e.g., observers with an unknown input with 

output reconstruction, if the state estimate ˆ
tx  is not of 

primary interest. 

 

We will illustrate the possibilities and limitations 

of approaches using fault signature directions with the 

Beard filter [31]. 

Consider a linear dynamic system with discrete 

time 1, 2,...t  , described by the equation 

 
T

1

0 0

0 0 ,

,

t t t i

t

x Ax Bu B f

x x





  


   (7) 

where 
n

tx   is the state vector; 
l

tu   is the con-

trol vector; n nA   and n lB   are matrices of 

constant coefficients; the additional term 

 
T

0 0iB f  corresponds to an unknown 

disturbance (external signal) if  at the ith input of the 

system, 1,i l , .l n  By assumption, all system faults 

under consideration are reduced to a set of unknown 

external signals. 

The Beard filter allows detecting m  faults of the 

specified type and finding the corresponding column 

ib  of the matrix B . 

The filter involves an auxiliary dynamic system of 

the form 

1 0 0( ),t t t t t tw Aw Bu K x w w w      ,       (8) 

which repeats the structure of the diagnosed system 

(7) with the additional term ( )t tK x w . The coeffi-

cient matrix K  is assigned in a special way. 

Subtracting equation (8) from equation (7) gives 

1 1 ( )

0

( ) ( ) .

0

t t t t

t t t t i

x w A x w

K x w B u u B f

    

 
 

    
 
  

            (9) 

By introducing the residual 
t t tr x w  , we write 

equation (9) as 

1

0

( )

0

t t ir A K r B f

 
 

  
 
  

.                  (10) 

Note that the residual is independent of the control 

vector 
tu  and state 

tx  of the system, being determined 

only by the presence of an external signal 
if  and the 

properties of the matrix ( )A K . 

Let the coefficient matrix K  be chosen so that 

nA K I   ,                        (11) 

where nI  denotes an identity matrix of dimensions 

n n ;   is a real number with norm 1  . Then the 

expression (10) takes the form 

1 0 0

0

,

0

t t i tr r B f r r 

 
 

   
 
  

,       (12) 

and the filter is stable. Due to this property and the 

diagonality of the matrix (11), the residual 
tr  gradually 

converges the vector 

 
T

lim 1

1

1
i ii ni ir b b b f


. 

The matrix B  of equation (7) contains m  col-

umns, each defining a particular direction in the n-

dimensional space.
4
 Thus, the issue is to determine the 

columns of the matrix B  on which the vector (12) is 

projected in the vector representation. All l  external 

signals (faults) if  can be monitored simultaneously. 

The possibilities of the Beard filter are not ex-

hausted by this. Similar calculations yield relations for 

the column-wise determination of variations in the 

elements of the matrix A  in equation (7). In this case, 

it is necessary to consider the equation 

 
T

1 0 0 .t t t ix Ax Bu A        (13) 

Under the appropriate conditions, the residual con-

verges to 

 
T

lim 1

1

1
i ii ni ir a a a 


. 

The remaining considerations are analogous to the 

above. All n  external signals (faults) i  can be esti-

mated simultaneously. 

                                                           
4 The columns are supposed to be linearly independent. 



 

 
 

 

 
 

 ● 

The main properties of the Beard filter are as fol-

lows: 

– Constant faults of the specified type are detected. 

– Fault estimation requires time to complete the fil-

ter transients. 

– When only part of the state vector is measured, 

t ty Cx , where 
m

ty   and m nC  , one can esti-

mate only m  faults described by m  columns accord-

ing to the schemes (6) and (12) from the set of all col-

umns of the matrices A  and B . 

For further presentation, we recall some formulas 

from part I of the survey; see Section 5 in [19]. 

Let a syndrome be an m-dimensional vector 

 
T

1 m    , and let the possible faults of the 

object be formalized by an n -dimensional vector 

 
T

1 nF f f . Then 

( , , ) 0.Y Z F                        (14)  

For the syndrome   to respond to a single fault 

0if  , it suffices to satisfy the nonzero sensitivity 

condition 

: 0.
j

i

j
f


 


                          (15) 

In the case of a multiple fault (when several faults fi 

occur simultaneously), the additional condition 

1 1 1 1

1

0,

      
   

   
      
   

/ /

/ /

n

m m n n

f f f

f f f

     (16) 

(no mutual compensation (14) for the effects of these 

faults) must be valid. 

The Beard filter is a special case of the approach 

with algebraic invariants, where redundancy is intro-

duced artificially via the auxiliary system (8). The sen-

sitivity condition (15) always holds for each time in-

stant: the syndrome (14) is the residual 
1ir 
 and , due 

to equations (12) and (13), 
1 /i ir f B    and 

1 /i ir A   . Condition (16) turns into the above 

property of a bounded number of detectable faults, as 

it prescribes the linear independence of the columns

 
T

1. 1 . 1/ /i k m i kr f r f     , making the corre-

sponding matrix nonsingular and, as a necessary con-

dition, the number of residuals . 1j ir    equal to the 

number of detectable faults 
kf . 

 

The main idea of fault detection via parity equa-

tions is to check the consistency of different (usually 

input and output) measurements obtained at an object 

diagnosed and a control scheme [34]. 

As for observers, the model parameters and the 

structure of the process observed must be known a 

priori.  

This fault detection approach is as follows. For a 

SISO object with a known transfer function 

( ) ( ) / ( )W z b z a z , one uses, in parallel, a model of 

the form ( ) ( ) / ( )m m mW z b z a z , where ( ),a z  ( )b z , 

( )ma z , and ( )mb z  are known polynomials of the oper-

ator z . According to the developer’s decision, any 

scheme can be implemented as shown in Fig. 4.  

The scheme in Fig. 4a corresponds to the residual 

of outputs; the scheme in Fig. 4c, to the residual of 

inputs; the scheme in Fig. 4b, to the intermediate solu-

tion. In these schemes, when the dynamic properties 

(parameters of polynomials) of the object and its mod-

el coincide, the residual 
tr  is 0. The presence of faults 

causing variations in the parameters of the object’s 

transfer function generates a non-zero residual. 

The above schemes have different sensitivities to 

different faults. Moreover, they can be augmented 

with different filters to achieve acceptable sensitivity 

or coarseness [34, 35]. Here, by default, the measured 

signals are equal to their true values: 
t tu u   and 

t ty y  . 

 
 

 
                           (a)                                                        (b)                                                          (c) 

 
Fig. 4. Typical schemes of fault detection via parity equations: (a) by outputs, (b) by the intermediate signal, and (c) by inputs. 
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As shown in [36], fault detection via parity equa-

tions provides less design flexibility compared to ob-

server-based methods without any constraints. 

A disadvantage of this method is the generation of 

only one feature (residual) for an SISO object, which 

prevents from specifying the character and location of 

the fault: there is one equation, and a non-zero value 

of one residual indicates only the inconsistency of this 

equation. Nothing more can be extracted from this 

information. Various solutions were proposed to over-

come this drawback [33, 37]. 

 

Pioneered by L.A. Mironovskii [38], this method is 

a most effective one. The method involves a dynamic 

system for variables kz , supplementing the model 

of an object diagnosed: 

1t t tx Ax Bu   ,                        (17) 

where 
n

tx  , 
l

tu  , and A  and B  are constant 

matrices. 

The redundant variables are introduced by satisfy-

ing two conditions 

0tMz  , 
t tTz x ,                       (18) 

where ( )k n kM    and ( )n n kT    are known (giv-

en) constant matrices.
5
 Substituting the expression 

(17) into conditions (18) and resolving for 
1tz 
, we 

obtain the following equation of order ( )n k : 

1 1

1
0 0

t t t

T AT T B
z Tz u

M M

 



       
        
       

. 

It describes the behavior of the redundant system. This 

system, if stable, is equivalent to the original system 

(17) in terms of the output 
tx  and, at the same time, 

can be used to monitor its operation by the k-

dimensional residual vector 

t tr Mz . 

Various refinements of the redundant variable 

method are known [11, 39], both in terms of formula-

tion and solution. They extend the original method to 

models with transfer functions and nonlinear models 

and minimize the redundancy of the system. 

Like the Beard filter, the redundant variable meth-

od is a special case of the method with algebraic invar-

iants. Therefore, the sensitivity conditions (15) and 

(16) apply to it as well.  

                                                           
5 The rows of the matrices M  and T  are supposed to be linearly 
independent. 

Let the possible faults of an object diagnosed be 

formalized by the equation 

1t t tx Ax Bu F    , 

where  
T

1 nF f f  is the vector of unmeasured 

signals representing changes (faults) in the object. Ac-

cording to conditions (18), at the first time instant, for 

each formalized fault 
if  we obtain 

( 1)

11. 1

1

. 1

1 ( ) 1

0
/

1
,

0
/

0

n
t i

it

i

k t i

k n k

r f
Tr

M
Mf

r f









  

 
    

                    
  

(19) 

where 1i
 is the unit standing in the ith row of the last 

cofactor column. At each subsequent time instant 

, 2,t q q N  , in view of formula (17), we have 

( 1)

1.

.

1
1

0

1 ( ) 1

/

/

0

1
,

0

0

n

t q i

t q

i

k t q i

N
is

s

k n k

r f
r

f
r f

T
A M

M














  

  
  

  
   

 
 

         
 
  



        (20) 

where 
sA  is the sth degree of the matrix A  from for-

mula (17). 

In the presence of faults, non-zero values of the 

components (19) and (20) are not obvious and depend 

on the choice of the matrices T  and ,M  which re-

quires developer’s art. For example, as the reader can 

easily verify, in the simplest case of a diagonal or 

codiagonal matrix 
T

T T  T M , the sensitivity of all 

components of the residual 
1tr 
 to any fault 

if  has 

zero value. 

 

The robustness of fault diagnosis algorithms to 

various uncertainties, including modeling errors and 

the active noise of meters, is a problem deserving spe-

cial attention. 

As a rule, in theoretical studies and practical appli-

cations, all uncertainties are generalized into additive 

disturbances affecting a system (an object, sensors, 

and actuators). Although the disturbance vector is un-

known, by assumption, it can be estimated through 

identification procedures.  

The objective of disturbance elimination approach-

es in a fault diagnosis system is to completely elimi-
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nate the effect of disturbances on the residual, which 

may be generally impossible. There is a trade-off be-

tween sensitivity to errors and robustness to modeling 

uncertainty, so robust residual generation can be 

viewed as a multicriteria optimization problem [4, 40]. 

It consists of maximizing the effect of faults and min-

imizing the effect of uncertainty. 

One active way to achieve robust fault detection 

[1] is based on an approximate representation of the 

modeling errors in model (1): 

( ) ( )u d

y t y tW z u W z d  , 

where 
td  is an unknown vector and ( )d

yW z  is the es-

timated transfer function. Robust fault detection algo-

rithms can be obtained by using this approximate 

structure in the design of disturbance-eliminating re-

sidual generators. 

Another approach, called passive robustness, in-

volves a residual generator with an adaptive threshold. 

A simple example is a robust fault detection method 

with a threshold adaptor or selector [41]. This method 

requires no effort to develop a robust residual genera-

tor. 

In this case, the residual generation uncertainty is 

represented as 

( ) ( )u

t y tr H z W z u  . 

Under the assumption of small modeling errors, 

( )u

yW z   , 

the adaptive threshold can be produced by a linear sys-

tem of the form 

( )t tH z u   . 

In this case, the threshold 
t  is no longer fixed but 

depends on the input signal 
tu , thus being adaptive to 

the operating mode of the system. A fault is detected if 

t tr   . 

A more detailed approach to robust residual gener-

ation proceeds from a discrete object description in 

terms of transfer matrices: 

 ( ) ( ) ( ) ( )u u d f

t y y t y t y ty W z W z u W z d W z f    , (21) 

where 
tu  and 

ty  are the input and output of the ob-

ject; 
tf  is the vector of faults to be detected; 

td  is the 

vector of disturbances; ( )u

yW z  is the representation 

error of the transfer matrix ( )u

yW z ; ( )d

yW z  is the ef-

fect of the modeling disturbance; the matrices 

( )u

yW z  and ( )d

yW z  together describe the modeling 

uncertainties. 

The disturbance generator 
tr  in Fig. 4a is described 

by the equation 

 ( ) m

t y t tr H z y y  ,                     (22) 

where 
m

ty  denotes the output of model (1) without 

faults, errors, and disturbances; ( )yH z  is the transfer 

matrix of residual processing. Substituting the expres-

sion (21) into equation (22) yields 

( ) ( )

( ) ( ) ( ) ( ) .

f

t y y t

d u

y y t y y t

r H z W z f

H z W z d H z W z u



  
         (23) 

Extracting the first term in formula (23) against the 

background of the other two terms is a very difficult 

task. Therefore, robust residual generation is common-

ly reduced to satisfying the condition 

( ) ( ) 0d

y yH z W z  .                       (24)  

Here, various approaches are applied (e.g., the ones 

with observers, optimization, given structures, identi-

fication schemes, etc.). Often, such a problem cannot 

be completely solved, as sensitivity to faults is lost. 

However, compromise solutions are known.  

Decoupling from disturbances can also be achieved 

using design methods in the frequency domain. An 

example is the robust detection of faults using stand-

ard H
 filtering. 

For instance, when condition (24) fails, an approx-

imate estimate can be obtained, e.g., in the form of the 

efficiency index [42]: 

( ) ( )

( ) ( )

d

y y

d f

y y

H z W z
J

H z W z
  or 

r r
J

f

 


 
. 

More elegant and advanced H∞ optimization meth-

ods are based on the algebraic Riccati equation [43]. 

Often, a slightly modified H∞ filter is used to form the 

residual, i.e., the objective of design is to minimize the 

effect of disturbances and modeling errors on the es-

timation error and, consequently, on the residual. 

However, robust residual generation differs from ro-

bust estimation as not only disturbance attenuation is 

required: the residual must remain sensitive to faults 

while minimizing the effect of disturbances. 

According to part II of the survey, fault diagnosis 

methods based on the classical modeling of an object 

monitored still attract many researchers. Fault diagno-

sis methods based on the identification approach, ob-

servers, and parity equations are actively applied. 
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A widely known solution is the Beard filter, represent-

ing a special case of the approach with algebraic invar-

iants, where redundancy is artificially introduced via 

an auxiliary system. The redundant variable method is 

an effective approach to fault diagnosis. The robust-

ness of fault diagnosis algorithms to various uncertain-

ties, including modeling errors and the active noise of 

meters, deserves special attention.  

In part III of the survey, we will analyze diagnosis 

methods based on neural networks, fuzzy and structur-

al models, and models in the form of sets. Finally, part 

IV will be devoted to new approaches to fault diagno-

sis and combinations of different models and methods. 
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