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Abstract. Control mechanisms for the rhythms of neuronal ensembles based on the neuromodu-

lation effect are described and implemented. The biological mechanisms of neuromodulation 

are briefly outlined, and some aspects are highlighted to control the activity patterns of inter-

connected neurons forming ensembles. Within the suggested model, neuromodulation is a 

change in the neuron’s properties responsible for its sensitivity to excitatory and inhibitory im-

pacts (and, therefore, for its activity). This change is initiated by certain neurotransmitters 

(modulators), which indirectly influence the electrical activity of all neurons sensitive to them. 

The discrete asynchronous chemical interaction model of biological neurons in small neural 

networks is modified and extended to implement this control mechanism inherent in living or-

ganisms. The key effect of neuromodulation is the rapid functional reorganization of neural 

networks without changing their structural properties. Activity patterns are changed not via 

costly changes in the connections between neurons but by changing the chemical environment 

of the ensemble’s neurons. The mechanism of neuromodulation is formalized. The new model 

is implemented in software, and several computational experiments are performed to change the 

gait of hexapods. 

 
Keywords: neuron, neuromodulation, neurotransmitters, control, discrete modeling, generator of rhythmic 

activity.  
 

 

 

INTRODUCTION  

In neurobiology, there is the concept of a central 

pattern generator (CPG). It refers to a neuronal en-

semble whose members jointly generate a certain mo-

tor program of the body. A motor program is under-

stood as a time-ordered output activity transmitted to 

muscles, forcing them to contract and relax in a certain 

coordinated sequence that forms a motor pattern [1, 2]. 

Locomotor gaits are a good example of such patterns. 

For four legs, gallop, trot, amble, and step are often 

distinguished. The same neuronal ensemble is capable 

of generating different activity patterns. Some model 

examples in this paper will show how to switch be-

tween different patterns using the neuromodulation 

effect without restructuring the ensembles. 

 

__________________________ 
1This work was supported in part by the Russian Foundation for 

Basic Research, project no. 20-07-00190A.  

The neuromodulation effect is that neurotransmit-

ters (chemical signaling molecules acting on neurons 

sensitive to them) can switch the network of interac-

tions [3–6]. Anatomical connections between neurons 

indicate only the potential for their interactions. Real 

interactions are determined by molecules of neuro-

modulators, which change the composition and activity 

of neuronal ensembles [4]. In other words, anatomical 

connections are only a starting point for understanding 

the dynamics of ensembles [5]. An important role is 

also played by the fundamental diversity and heteroge-

neity of neurotransmitters and the types of neurons and 

their interactions [2, 7–9]. 

The overwhelming majority of biologically accu-

rate mathematical models of neurons describe mem-

brane potential dynamics [10–12]. The advantages of 

discrete models are interpretability and the reflection 

of neural interactions at a phenomenological level un-

der a relatively low computational complexity. How-

ever, discrete models of biological neurons describing 
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heterochemical interactions have not been developed 

so far. 

The automata-based approach to modeling biologi-

cal neurons was proposed in the monograph [13]. This 

paper presents an automaton model of a neuron that 

survives under conditions of limited nutrition. It is 

shown that when minimizing consumption, the system 

acquires memory and the mechanisms of behavior and 

feeling. The basic property of the neuron modeled be-

low is its endogenous electrical activity: “A discharge 

in a neuron is needed by the neuron itself.” 

This paper modifies the discrete asynchronous 

chemical interaction model of neurons [14] to repro-

duce neuromodulation effects. In the previous version 

of the model, neurotransmitters only have an activating 

or inhibitory effect on neurons, i.e., increase or de-

crease the membrane potential. In the new version, two 

types of receptors are introduced for neurons as fol-

lows. The impact on the first-type receptors, as before, 

entails a change in the charge on the neuron mem-

brane. The impact on the second-type receptors chang-

es the sensitivity of the first receptors, thereby modu-

lating the neuron’s response to external impacts. 

1. BIOLOGICAL MECHANISMS OF NEUROMODULATION  

The main characteristic of neuron’s activity is the 
electrical potential at its membrane. When the mem-

brane potential exceeds some threshold, the neuron 

goes into an active, excited state. Excitation is trans-

mitted from the neuron to other neurons and tissue 

cells via axons having terminals with synaptic endings. 

They contain neurotransmitter molecules whose func-

tion is to transmit signals between neurons chemically. 

When the excitement reaches the synaptic end, it un-

dergoes rapid transformations, leading to the release of 

transmitters into the extracellular space. Near the syn-

aptic end of the neuron that transmits the signal, there 

are dendrites or the body of the neuron that receives 

the signal. Their surface has receptors acting as signal 

receivers. The connection of a transmitter with a recep-

tor sensitive to it causes a chemical reaction and intra-

cellular transformations in the receiving neuron, which 

often change its membrane potential. Therefore, it is 

convenient to represent the nervous tissue at the cellu-

lar level as a network of electrically conductive ele-

ments. This approach to describing the nervous system 

is called electrophysiological. It resulted in many im-

portant discoveries and dominated neurosciences for 

the entire second half of the 20th century. The over-

whelming majority of exact mathematical models of 

neurons are aimed precisely at describing membrane 

potential dynamics [10–12]. 

Nevertheless, chemical interactions between neu-

rons can induce a wide range of intracellular effects 

not expressible by a direct change in the value of the 

membrane potential. Chemical interactions between 

neurons, not associated or indirectly associated with 

changes in the membrane potential, have a huge im-

pact on the behavior of both individual neurons and 

their populations. The rich variety of such impacts is 

called “neuromodulation” [3–6]. Often, neuromodula-

tion does not directly affect membrane potential dy-

namics but modifies endogenous and exogenous pat-

terns of electrical activity. In this regard, it is especial-

ly interesting when studying the mechanisms of the 

emergence and maintenance of rhythmic activity in the 

nervous system. Neuromodulation can significantly 

vary rhythm parameters (e.g., the duration of the phas-

es of activity and silence) and even transfer the neuron 

to the rhythmic mode from the non-rhythmic one [15]. 

The specifics of existing approaches to modeling 

natural neural systems restrict the possibilities of re-

flecting neuromodulatory impacts. Biophysically accu-

rate modeling requires measuring the microconcentra-

tions of various substances very finely in extremely 

small volumes of space and considering the geometric 

features of the extracellular space on the nanometer 

scale. Currently, models of this level of accuracy exist 

only for local areas of a neuron [16] and are impossible 

in practice, even for small groups of neurons. 

In this paper, we develop the asynchronous model 

of multitransmitter interactions [14, 17]. The model 

has the following features: a discrete approach is used 

to model the behavior of neurons, and the neurons in 

the model exchange chemical signals extrasynaptical-

ly–through the common extracellular space (all signals 

are broadcast). However, any impact on a neuron is 

reflected in this model directly by a change in the 

membrane potential. Hence, the expressive power of 

the multitransmitter approach is considerably restrict-

ed. This paper introduces an additional modus of neu-

ral interactions into the asynchronous model by adding 

another type of receptors that would directly affect not 

the membrane potential but the weights of other recep-

tors, thereby changing the neuron’s sensitivity to cer-

tain input signals. As shown below, the introduced 

modifications allow implementing a fast and low-cost 

mechanism for controlling motor rhythms.  

2.  BASIC NOTIONS OF DISCRETE ASYNCHRONOUS 

MODEL   

The basic model and the principles of its function-

ing were formally described in [17]. Some model ex-

amples of the rhythms generated by the nervous sys-

tems of various mollusks were presented in [14]. In 
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this section, we briefly consider the model and the 

main definitions and notations used below. 

A heterogeneous neural network is a system 

S = <N, X(t), C, T> with the following notations: 

N = {N1, …, Nn} is the set of neurons; X is the extra-

cellular space through which chemical neural interac-

tions occur; C = {c1, …, cm} is the set of transmitters; 

T denotes the continuous time in which the system is 

functioning.  

The continuous time is divided into unequal inter-

vals (time steps) by events. An event is a change in the 

state of at least one of the system’s neurons (activation 

of a passive neuron or deactivation of an active neu-

ron). 

In each time step, neurons interact with the extra-

cellular space X. Transmitters from the space X influ-

ence the behavior of neurons, which can be expressed 

in a change in their state of activity. In turn, a change 

in the neuron’s state changes the transmitter composi-

tion of the space X. This approach allows describing 

both synaptic and nonsynaptic interactions [14].  

 

2.1. Neuron Parameters 

2.1.1. Receptors 

Neuron Ni possesses many receptor slots, and each 

slot is characterized by sensitivity to some transmitter 

cj and weight wij  R. A slot is a union of all receptors 

sensitive to transmitter cj; its weight is the cumulative 

effect of these receptors. If the neuron is insensitive to 

transmitter cj, it does not have a corresponding slot, 

and wij = 0. A weight wij > 0 (wij < 0) means that this 

transmitter has an excitatory impact (inhibitory impact, 

respectively) on the neuron. For all neurons, the recep-

tor weights form the matrix W = (wij)nm.  

 

2.1.2. Output activity of neurons  

The activity of neuron Ni is given by a value 

yi(t)  {0, 1}: if yi(t) = 1, the neuron is active in time 

step t; otherwise (yi(t) = 0), the neuron is passive in 

time step t. 

The neurons in the model are transmitter-specific: 

upon activation, each neuron releases the same trans-

mitter cj into the extracellular space. In the model 

without neuromodulation, the release is determined by 

a constant dij. 

The output is represented by the matrix D = (dij)nm, 

in which dij ≥ 0 is the rate of release of transmitter cj by 

neuron Ni. Note that dij  = 0 if neuron Ni does not re-

lease transmitter cj. Due to the transmitter-specificity 

of neurons, each row of the matrix contains exactly 

one nonzero element. The value dij is assumed to be 

invariable during the release process.  

2.1.3. Internal state of neurons  

Neuron Ni has the membrane potential   (t), which 

varies within a range        (t)       . The neuron in 

the model is active if its membrane potential   (t) ex-

ceeds a threshold Pi, often smaller than      . The 

values    ,      , and Pi are specific for each neuron.  

 

2.1.4. Types of neurons 

The neurons in the model are heterogeneous. Each 

neuron is determined by the following characteristics: 

– the transmitter it releases (see subsubsection 

2.1.2); 

– the set of receptors and their weights; 

– the nature of endogenous activity, i.e., the ability 

for activation without external impacts. 

The model implements three types of neurons with 

different types of activity (Fig. 1): 

 Tonic neuron has permanent endogenous ac-

tivity in the absence of inhibition. In the model, per-

manent activity is understood as the regular generation 

of spikes (nerve impulses) in equal time intervals. 

 Burst (oscillator) neuron generates spike 

bursts in definite time intervals in the absence of inhi-

bition. The frequency of spikes in bursts exceeds the 

frequency of spikes generated by the tonic neuron (Fig. 

1a, b). 

 Reactive (passive) neuron has no endogenous 

excitation. It is activated only under an excitation 

reaching the threshold. 

 
      

 

 

Fig. 1. Three types of endogenous activity. Diagrams with generated 

spikes (left column), and model approximations (right column): 

(a1) tonic neuron with regular spikes; (a2) constant membrane potential Ui(t) 
exceeding threshold Pi; (b1) oscillator’s spike bursts; (b2) piecewise linear 

approximation by four endogenous rates of change of membrane potential: 

two rates above threshold, and two rates below; (c1), (c2) reactive neuron 

with membrane potential below threshold.   
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A neuron is activated if its membrane potential has 

exceeded a threshold specific for each neuron. Activa-

tion occurs due to either endogenous activity or exter-

nal impacts when the sum of the responses of the re-

ceptors (considering their weights) exceeds the thresh-

old. In this case, the neuron releases a transmitter. Dif-

ferences in the activation rates of tonic and burst neu-

rons are implemented by setting specifying different 

values of the rates of release dij; see subsubsection 

2.1.2.  

For all three types of neurons, the endogenous dy-

namics of the membrane potential are given by linear 

functions. The left column in Fig. 1 schematically 

shows the membrane potential dynamics of the neu-

rons generating impulses; the right column, its linear 

approximations used in the model. 

 

2.1.5. Membrane potential dynamics 

During each time step, the membrane potential of 

neuron Ni changes (increases or decreases) linearly, 

i.e., with a constant total rate:    ( )       ( )    ( ), 
where      ( ) is the endogenous rate of change of the 

membrane potential given by a piecewise linear func-

tion;  is a parameter depending on the neuron’s type 
of electrical activity (each type of neurons has a specif-

ic set of endogenous rates of change) and the current 

range of the membrane potential in this time step; si(t) 

is the exogenous rate of change, equal to the power of 

the external impacts:   ( )  ∑      ( )    ,                    (1) 

where xj(t) is the concentration of the jth transmitter in 

the extracellular space (see subsection 2.2).  

For different types of neurons, changes in the 

membrane potential were described in detail in [12].   

 

2.2. Extracellular space 

The state of the extracellular space in time step t is 

represented by a vector X(t) = (x1(t), …, xm(t)), where 

xj(t) > 0 is the total volume of transmitter cj present 

during time step t; otherwise, xj(t) = 0. The state of the 

extracellular space changes under each event: when a 

neuron is activated, the concentration of a neurotrans-

mitter specific to it increases by dij; when deactivated, 

it decreases by the same value. 

In what follows, we propose a modification of this 

model to reflect the neuromodulation effects. 

3. FORMAL DESCRIPTION OF NEUROMODULATION 

As shown in subsubsection 2.1.1, the receptor 

weights wij in the basic model are constant values. 

They contribute to the rate of change of the membrane 

potential according to formula (1). For reflecting the 

neuromodulation effect in the model, we introduce 

additional receptors responsible for neuromodulatory 

impacts. For neuron Ni, the weight of the modulatory 

receptor will be denoted by      , where the superscript 

β indicates the receptor’s type. The weight       is the 

value by which the weight wij changes in the presence 

of transmitter ck. We write the set of receptor weights 

of neuron Ni receptors responsible for neuromodulato-

ry impacts as the matrix      (     )     
Then the jth row of this matrix is a vector contain-

ing the weights of all receptors, sensitive to transmitter 

cj, that change under the impact of transmitter ck, k = 1, 

…, m.  

Formula (1) for calculating the external impact on a 

neuron (1) will be modified to   ( )  ∑ (    ∑            ( ))   ( )          (2) 

Using Wi = (wij)1×m and X(t) = (xj(t))1×m, it can be 

written in the matrix form    ( )      ( )   ( )     ( )   
This means that before calculating the contribution 

of the jth transmitter to the external impact s on neuron 

Ni, the weight wij is summed up with the product of the 

jth row of the matrix Wi
β
 and the transmitter concen-

tration vector X(t). All receptor types respond to the 

same set of transmitters. Such changes allow introduc-

ing interactions that modify the neuron’s response to 
transmitters by specifying indirect impacts on the 

membrane potential.  

All model parameters described in Sections 2 and 3 

are illustrated Fig. 2a, b.  
 

 

 

(a)                                         (b)  

 

Fig. 2. (a) Neuron and its model parameters: excitatory, inhibitory, and 

modulatory receptors with weights wi1 > 0, wi3 < 0, and     , respectively; 

each receptor is sensitive to transmitter of one type; type of endogenous 

activity: dynamics of membrane potential type Ui(t); neuron’s release: type 
of neurotransmitter cj and rate of release dij. (b) Interaction of neurons 
through common intercellular space characterized by neurotransmitter 

concentration vector.   
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Remark. Formula (2) has a quadratic term, which 

generally increases the number of parameters from 

O(nт) to O(nm
2
). As a result, the problem of choosing 

appropriate parameters for implementing the system’s 
desired behavior acquires a higher complexity. This 

paper will be restricted to studying a particular case in 

which modulatory impacts completely disable some 

receptors; see Section 4. One modulatory transmitter is 

added to zero the weights of given receptors. In this 

statement, the problem’s dimension remains the same. 

Fig. 3 illustrates the modulation of the impact of 

neuron N2 on neuron N1 by neuron N3. Without the 

impact of neuron N2, the membrane potential dynamics 

of neuron N1 do not change.  

 
    

 

 

 
Fig. 3. Change in membrane potential under modulatory impact. Neu-

ron N3 modulates impact of neuron N2 on neuron N1.  
(a) Modulatory impact changes the weight of receptor of neuron N1 to the 

transmitter of neuron N2; when neuron N2 is silent, modulation does not 
affect the membrane potential of neuron N1. (b) Neuron N2 is activated 

earlier than neuron N3 and slows down the oscillations of membrane poten-

tial of neuron N1; when neuron N3 is connected, oscillations slow down 
even more due to modulatory impact. Ordinate axis corresponds to mem-

brane potential and abscissa axis to time.   

 

4. OBJECT OF MODELING 

Let us describe the gait switching mechanism of an 

abstract six-legged walking (hexapod) robot using neu-

romodulation. The motor programs that control walk-

ing differ in the number of legs on the ground at a giv-

en time. For example, four legs lean on the ground un-

der a four-legged gait, and two are taking a step. As a 

rule, one, two, or even three legs take a step simulta-

neously. The more legs are involved, the higher the 

speed of movement will be. A three-legged (tripod) 

gait is considered optimal since the robot has three 

support points at each time, which provides stability.  

The motor programs of hexapods are biologically 

inspired: insects are six-legged animals and have a 

fairly simple nervous system. Therefore, it is possible 

to study the mechanisms that control their walking [18, 

19]. Figure 4 shows the three-legged gait of the fruit 

fly Drosophila melanogaster.  

The tetrapod gait is similar: four legs are always on 
the ground, and two take a step. The idealized step al-
ternation diagrams of these gaits are presented in Fig. 
5.  

5. GAIT SWITCHING USING NEUROMODULATION 

Each leg of the animal performs two groups of mu-

tually exclusive actions: moves the animal forward 

when it is on the ground, or steps forward. These 

groups consist of several simpler actions correspond-

ing to flexion, extension, and movement of the limbs 

in different planes. In animals, the actions mentioned 

are implemented by contractions of various muscle 

groups; in robots, by switching on various servos.   

 
     

 
 

 
Fig. 4. Tripod gait of Drosophila, bottom view:  
front and back right (R1, R3) and middle left (L2) legs are on ground; front 

and back left (L1, L3), and middle right (R2) feet take step. 

 
       

 
 

 
Fig. 5. Step alternation diagrams for Drosophila:  

(a) tetrapod gait and (b) tripod gait.  
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Since the action sequences for each leg are stereo-
typed, the asynchronous model will reproduce four- 
and three-legged gaits after assigning two neurons for 
each leg: one is active when the leg is on the ground, 
the other when the leg oversteps. 

Let the neuron responsible for the movement of the 
supporting leg be tonic (active in the absence of exter-
nal impacts), and the stepping one be silent (reactive). 
For their anti-phase activity, we create an excitatory 
connection from the support tonic neuron (Supp) to the 
step silent neuron (Step) and an inhibitory connection 
from the step neuron to the support one; see Fig. 6.  

The membrane potential of such a pair of neurons 
will change as shown in Fig. 7. Tonic neuron Supp 
activates silent neuron Step. Neuron Step reaches the 
threshold, is activated, immediately inhibits neuron 
Supp, and remains active for some time, while its 
membrane potential decreases under the influence of 
endogenous forces, approaching the threshold from 
above. When neuron Step becomes silent, the inhibito-
ry impact on neuron Supp is eliminated: it is activated, 
and the time step repeats.  

Next, we build six pairs of such neurons with nec-
essary connections so that the excitation pattern corre-
sponds to the diagram of a four-legged gait (Fig. 5a). 

 
     

 
 

 
Fig. 6. Connection diagram of two antagonistic neurons controlling 

movements of one leg.   

 
 

     

 
 
 

Fig. 7. Graphs of the membrane potential of model neurons with anti-

phase excitation.  

Ordinate axis corresponds to membrane potential and abscissa axis to time. 

For this purpose, we introduce inhibitory connec-
tions from each step neuron on the right and left sides 
to two other step neurons on the same side. The corre-
sponding diagram is shown in Fig. 8.  

Here groups of neurons on the right and left sides 
are not connected with each other, and they are syn-
chronized using the system parameters. They can be 
easily synchronized by making all support neurons 
silent and introducing one tonic neuron to excite them. 
However, this approach would considerably compli-
cate the connection diagram, and Fig. 8 and 10 offer a 
simplified version. 

Mutual inhibitory connections of the step neurons 
ensure that only one of them will be active on the left 
and right sides in each gait phase. The activation order 
is determined by the simulation parameters. The pro-
gram-generated graphs of the membrane potentials of 
neurons are shown in Fig. 8. L3Step is the first neuron 
activated on the left side. While active, it inhibits all 
other neurons Step on the left side. According to the 
simulation parameters, when the activity period of 
neuron L3Step ends, L2Step is activated first among the 
remaining step neurons. During the entire activity pe-
riod, it inhibits the neighbors. Then neuron L1Step 
switches on, and at the end of its activation period, the 
time step repeats. The order for the right side is sym-
metrical, with the only difference that neuron R2Step is 
activated first. 

 
     

 

 
Fig. 8. Diagram of connections and activation of neurons in tetrapod 

gait phase.   
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Fig. 9. Membrane potentials of neurons under tetrapod trait.  
In each phase, only one step neuron is active on each side: two legs take 

step, and four are on ground. Modulatory neuron (silent) is required to 

adjust to tripod gait. Ordinate axis corresponds to membrane potential and 

abscissa axis to time. 

 
     

 
 

Fig. 10. Modulatory impact suppresses inhibitory connections between 

first and third neurons. 

 

To harmonize this rhythm with the tripod gait dia-
gram (Fig. 5b), it suffices to switch off the inhibitory 
connections between the first and third neurons on 
each side. This can be achieved by introducing a mod-
ulatory neuron, the transmitters of which switch off 
inhibitory receptors between the first and third neurons 
on each side (Fig. 10). As a result, the first and third 
neurons begin to activate synchronously, and the dia-
gram corresponds to the tripod gait (Fig. 11). 

        

 
 

 

Fig. 11. Membrane potentials of neurons under tripod trait.  
In each phase, three neurons are active on both sides. Modulatory neuron 

releases transmitter suppressing inhibitory connections between first and 

third neurons throughout operation. Ordinate axis corresponds to membrane 

potential and abscissa axis to time. 

 
 

CONCLUSIONS   

This paper has proposed a formal description of the 

neuromodulation mechanism within the discrete asyn-

chronous model of heterochemical neural interactions 

and demonstrated the results of switching the gait of 

hexapods. 

The main and extremely significant neuromodula-

tion effect is the rapid functional reconfiguration of 

neuronal circuits (both natural and artificial) without 

changing their structural properties. Thus, activity pat-

terns can be changed not by long and costly changes in 

connections between neurons and not by switching 

between different neuronal circuits to perform different 

actions but by changing the chemical composition of 

the intercellular space within one neuronal ensemble. 

In the model, this is done by changing a single parame-

ter. This mechanism greatly simplifies the control of 

gaits and other types of motor activity.  
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