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Abstract. The problem of calculating the spectral entropy of a stationary random process is 

solved. The spectral entropy (σ-entropy) of a signal is understood as a scalar value characterizing 

the noise color; it describes the class of signals affecting a system depending on the band under 

study. By assumption, the random process is defined by a shaping filter, with the Gaussian white 

noise with a unit covariance matrix supplied at its input, or by an autocorrelation function. The 

spectral entropy of the stationary random process is analytically derived using a known mathe-

matical model of the shaping filter in the form of a log-determinant function that depends on the 

transfer matrix and the observability Gramian of the filter. An algorithm for calculating the σ-

entropy of stationary random processes with a known autocorrelation function is proposed. The 

method reduces to reconstructing the mathematical model of the shaping filter using its spectral 

density factorization. A numerical example is provided: spectral entropy is calculated for a dis-

turbance describing the velocity of wind gusts that affect an aircraft. 
 

Keywords: spectral entropy, stationary random process, spectral density, autocorrelation function, shaping 

filter.  
 

 

 

INTRODUCTION 

Representing a main characteristic of an automatic 

control system, the dynamic accuracy of signal trans-

mission or transformation is defined by the difference 

between the desired and actual values of a signal over 

time (or a certain functional of this difference). 

Any automatic control system must transmit or 

transform, in a required way, not a particular control 

signal but an entire set of such signals. Moreover, the 

nature of changes of each signal cannot be fully pre-

dicted in advance. Hence, it is necessary to study the 

statistical characteristics of the whole set of signals, 

which represent random functions of time. When in-

vestigating dynamic accuracy, one should consider 

system characteristics, e.g., the sample-to-sample scat-

ter of parameters tolerance bounds or their random 

change within certain limits during operation, includ-

ing, of course, random changes in the system structure 

[1, 2]. 

On the other hand, when designing closed-loop 

control systems, there is the need to suppress random 

exogenous disturbances affecting the system, i.e., to 

specify the desired dynamic accuracy of the closed-

loop system. The Gaussian white noise is the most 

common way to define a random influence applied to 

the system input. However, this noise is known to be a 

physically unrealizable random process. The so-called 

colored random processes are closest to the real pro-

cesses affecting a system [1, 3–5]. In the design and 

analysis of control systems, such processes can be im-

plemented by solving the shaping filter problem. As a 

rule, a shaping filter is represented as a linear time-

invariant system that receives the Gaussian white 

noise at the input and generates a signal with required 

statistical characteristics at the output. This class of 

random signals allows modeling the dynamics of a 

closed-loop system under noises close to real-life ran-

dom processes. 

In σ-entropy analysis and control problems, the 

sets of all possible random processes affecting a sys-

tem are given by a scalar nonnegative value called the 

spectral entropy (σ-entropy) of a signal [6, 7]. Howev-

er, when investigating systems, the following question 

arises inevitably: how should one determine the value 

of the spectral entropy of a random signal required for 

further study? This question can be settled analytically 

if the statistical characteristics of a random disturbance 
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are defined in the form of a shaping filter with the 

Gaussian white noise as the input. 

Therefore, we set a topical problem: it is required 

to determine the value of the spectral entropy of a ran-

dom signal generated from the Gaussian white noise 

using a linear stationary filter. The remainder of this 

paper is organized as follows. Section 1 is devoted to 

the problem statement and the main theoretical results 

related to the σ-entropy theory. In Section 2, we ana-

lytically derive the spectral entropy of a stationary 

random process using a known mathematical model of 

the shaping filter or a known autocorrelation function. 

An illustrative numerical example is provided in Sec-

tion 3. 

1. BACKGROUND AND PROBLEM STATEMENT 

This paper considers a classical shaping filter in 

the following form: 

     

    ,

x t Ax t Bv t

w t Cx t

  




                     (1) 

where   nx t   and   mw t   are the state and 

output of the filter;   mv t   is Gaussian white noise 

with zero mean and a unit intensity matrix; ,A B , and 

C  are constant real matrices of compatible dimen-

sions. By assumption, system (1) is minimum-phase. 

Recall that the spectral entropy of a stationary ran-

dom process  w t  is given by [6] 

04 ( )1
( ) = ( )lndet ,

2
tr ( )

w

w

m S
w d

S d









  
   


 




S      (2) 

where ( )wS   denotes the spectral density of the signal 

( );w t  m  is the dimension of the random process;   

and   are integration variables; finally, ( )   is a 

scaling function of the form 

0

2 2

0

( ) =


  
  

                         (3) 

The parameter 0  has the dimension of frequency 

and is chosen by the system designer based on the sig-

nificant range of frequencies when investigating the 

random process of interest. If the influence of a ran-

dom process on a linear control system is considered, 

then the value of this parameter should be several 

times greater than the system bandwidth.  

The spectral entropy calculation problem can be 

formulated as follows. 

Let a Gaussian white noise with a unit covariance 

matrix be supplied to the shaping filter (1). Given the 

scaling function (3), it is required to derive formulas 

for calculating the spectral entropy ( )wS  (2). 

To solve this problem, we will utilize the following 

well-known results [8, 9]. 

Lemma 1 (the Cauchy integral formula). Let D 

be a domain on the complex plane with a piecewise-

smooth or rectifiable boundary ,D     f z  be a 

holomorphic function in D , and 
0z  be a point inside 

the domain D. Then  

 
 

0

0

1
.

2

f z
f z dz

i z z



                      (4) 

Lemma 2 (on the absolute value of the loga-

rithm of the determinant). For a transfer matrix 

G RH ,  

 *lndet ( ) ( ) 2ln det ( ) ,G i G i G i     

where 
*( )G i  denotes the Hermitian conjugate  of the 

matrix G . 

2. THE MAIN RESULT 

To obtain the main result, we find the spectral den-

sity of the signal  w t  at the output of the shaping 

filter (1). It is determined by the expression 

     *( ) ,w vS G i G i S      

where  vS   denotes the spectral density of the 

Gaussian white noise  v t  and  G i
 

  
1

C i I A B


    is the transfer function of the 

shaping filter.  

By the problem statement, the Gaussian white 

noise  v t  has a unit covariance matrix; therefore,  

  .v mS I   

In this case,  

   *( ) .wS G i G i     

The problem of calculating the spectral entropy of 

the shaping filter (1) reduces to calculating the integral 

(2).  

Before transforming the expression (2), we recall 

the identity  det detmT T     for a matrix 

m mT   and a real scalar value  . Note also that 

ln lnm m    for 0.   
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Then the expression (2) can be transformed as fol-

lows:  

0

0
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Consider each term of (5) separately. For the first 

term, we obtain 
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where 
2

2
G  is the square of the 

2H  norm of the trans-

fer function  G s  ( s  denotes the Laplace transform 

variable). It has the formula  

 
2 T

2
tr ,G B PB  

where the observability Gramian P  is a solution to the 

Lyapunov equation  

T T 0.A P PA C C    

For the second term, 
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To calculate the last integral, we integrate 

  0

2 2

0

ln det ( )f z G z
z



 

 along the closed contour 

  consisting of a semicircle of radius R  centered at 

the origin and the diameter of this semicircle lying on 

the real axis. The desired integral will be found by 

letting R . As a result, 

0
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1
ln det ( )

1
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The function  f z  has poles at the points 
0i   

and is analytic inside the entire domain bounded by 

the curve  . 

Hence,  
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where   0
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0

ln det ( )G z
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
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Then the integral can be written as  
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Since the function  1f z  is analytic inside the 

closed contour  , the Cauchy integral formula (4) can 

be applied: 
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Due to the minimum-phase property of system (1), 

we finally obtain 

0
02 2

0

1
ln det ( ) ln det ( ),G i d G






    
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where  
1

0 0( ) .G C I A B


     

Let us formulate the following result. 

Theorem 1. The spectral density of a stationary 

random sequence  w t  generated by the shaping filter 

(1) from the Gaussian white noise  v t  with zero 

mean and a unit covariance matrix is given by 

 

 
0 0

T

2
( ) = lndet ,

tr

m G
w

B PB

 
S              (6) 

where  
1

0 0( )G C I A B


     and P  is the solution 

to the Lyapunov equation  

T T 0.A P PA C C    
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P r o o f. Based on the above considerations, we have  
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The last expression directly implies expression (6), and 

the proof is complete. ♦ 

The above theorem provides a method for deter-

mining the spectral entropy of a stationary random 

signal with a known mathematical model of the shap-

ing filter. However, this result can be applied also un-

der known (or experimentally determined) statistical 

characteristics of the random disturbance affecting the 

system, e.g., its autocorrelation function. For this pur-

pose, it is necessary to identify the shaping filter. Here 

is one method for solving such a problem in the one-

dimensional case [1]. 

Let  wR   be a known analytical expression for 

the autocorrelation function of a stationary signal. 

Then its spectral density can be found from the rela-

tion 

1
( ) ( )e .

2

i

w wS R d



 



   
 

 

As is known, when a stationary random signal 

passes through a linear stable time-invariant system (in 

our case, the shaping filter), the spectral density 

( )wS   of the steady-state random process at the sys-

tem output is given by 

 
2

( ) ( ),w sf vS W i S     

where ( )vS   is the spectral density of the input; 

 sfW i  is the transfer function of the system. Since 

the input signal is a Gaussian white noise, then 

( ) 1.vS    

Thus,  

 
2

( ) ,w sfS W i    

i.e., the square of the amplitude-frequency response of 

the shaping filter must coincide (within a constant fac-

tor) with the spectral density of the signal to be 

formed. 

To proceed, we emphasize that the spectral density 

of a stationary random process is a real even nonnega-

tive function of   under real values of .  

Since the spectral density under consideration is 

fractional rational, 

( )
( ) ,

( )
w

Q
S

R


 


 

where ( )Q   and ( )R   are polynomials with real co-

efficients containing only even degrees of  . (This 

fact follows from the evenness of the spectral density.) 

For real values of  , the spectral density ( )wS   

can be represented as 

   

   

     
2

( )

.
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Obviously, the function  sfW i  possesses all the 

properties of the transfer function of a stable linear 

time-invariant minimum-phase system. 

Consequently, 

 
 

 
.sf

B i
W i

A i


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
 

Thus, by decomposing the spectral density of the 

generated signal into the complex conjugate factors, 

we easily determine the transfer function of the shap-

ing filter. After that, it is necessary to get the state-

space representation of the system, e.g., using, the ca-

nonical Frobenius form, and then apply Theorem 1. 

3. A NUMERICAL EXAMPLE 

Consider the problem of calculating the spectral entropy 

of exogenous disturbances for a flying missile guided to a 

target [1]. A missile in the atmosphere is subjected to vari-

ous types of air flows, e.g., constant winds, upward and 

downward winds, wind gusts, swirls, etc. Wind gusts in-

crease congestion. In a sufficiently limited domain of space 

and time, wind can be considered a stationary spatiotem-

poral process. The disturbing moments due to lift force var-

iations are functions of the magnitude and direction of the 

velocity of wind gusts. However, only the velocity of wind 

gusts determines the value of missile deflection. The auto-

correlation function of the velocity of wind gusts affecting 

an aircraft approximately equals 

( ) e ,wR     

where   and   are constant values [1, 3]. The spectral 

density corresponding to this correlation function has the 

form 

2 2

2
( )wS .


 
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Factorizing the last expression yields  

2 2
( ) ,wS

i i

 
  

     
 

and the transfer function of the shaping filter modeling the 

velocity of wind gusts is given by  

 
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2sf

sf
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B i
W i .

A i i
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  

  
 

The corresponding state-state representation is 

     

   2

x t x t v t

w t x t .

  

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The random process has the dimension 1m .  We apply 

Theorem 1 to calculate its spectral entropy. In this case, 

 
1

0 0

0

2
( ) ,G C I A B P .

 
      

 
 

Therefore, the spectral entropy of this process is analyt-

ically derived in the form  

 
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tr
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Note that as 
0  , the expression under the loga-

rithm vanishes (hence, the spectral entropy tends to infini-

ty). The choice of the frequency 
0  determines the band-

width of interest.  

The figure below shows the graph of the spectral entro-

py depending on the parameter 
0  under 0 5.  .  

Thus, the main result of this paper can be applied in 

practice within the σ-entropy approach to analyze and de-

sign linear control systems with exogenous stationary 

noise. ♦ 

 
 

 

  
The spectral entropy depending on the frequency ω0. 

CONCLUSIONS 

 

In this paper, we have proposed a method for cal-

culating the spectral entropy of a stationary random 

process using a known mathematical model of the 

shaping filter or a known autocorrelation function of 

the process. For the known mathematical model of the 

shaping filter, by assumption, the Gaussian white 

noise with a unit covariance matrix is supplied to its 

input. If the random process is specified by an auto-

correlation function, the paper has proposed an algo-

rithm for constructing a mathematical model of the 

shaping filter using the Fourier transform to obtain the 

spectral density of the random process and perform its 

subsequent factorization. 

The main result of this paper can be applied to ana-

lyze and design linear time-invariant control systems 

with random disturbances, using the σ-entropy ap-

proach proposed in [6]. 
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