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Abstract. A generalized probabilistic model is proposed that uniformly describes the formation 

and development of individual, collective, and social experience at various human activity lev-

els. Some of its particular cases are considered, covering many learning models known in math-

ematical psychology and models of developing and mastering technologies within the method-

ology of complex activity. 
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INTRODUCTION 

 
Active systems. Let us separate two classes of sys-

tems that include a human. (Following the terminology 
of [1, 2], such systems will be called active systems.). 
These classes are: 

– Natural systems, existing or emerging “inde-
pendently,” in the absence of an external source that 
forms or determines the goal of activity. Such systems 
have independent goal-setting, and their global goal is 
development (which requires preservation and possibly 
adaptation reproduction). In terms of systems engi-
neering [3, 4], active systems with internal goal-setting 
are systems of systems (SoSs) belonging to collabora-
tive or virtual classes. 

– Artificial systems created by some subject to 
achieve his goals. In terms of systems engineering [3, 
4], active systems with internal goal-setting are exter-
nally directed SoSs or externally acknowledged SoSs. 

Depending on the presence of an explicit subject, 
one can distinguish between subject systems and non-
subject systems. The former systems perform their ac-
tivity, which is uniformly described by the methodolo-
gy of complex activity (MCA) [5] regardless of their 
type. The latter systems perform no activity them-
selves; more precisely, their “activity” is the set of ac-
tivities of their components. 

Thus, we have three options (one of the four possi-
ble options is contradictory); see examples in (Table 1) 
below.  

Table 1 

 
Classification of systems 

 
 Natural sys-

tems 

(internal goal-

setting) 

Artificial systems 

(external goal-setting) 

Subject  

systems 
Individual 

Organization 

Enterprise 

Government 

Particular case: individual 

employee 

whose internal motives are 

coordinated with external 

goals 

Non-

subject 

systems 

Social com-

munities: 

Group 

Family 

Genus 

Tribe 

Society 

Ethnos 

People 

Economic 

communities: 

Market 

Set of inde-

pendent inter-

acting eco-

nomic agents 

– 
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Fig. 1. Structure of active system. 

 

As a digression, note that human activity can be 

considered within the ASs of different levels and 

scales (Table 2), and a promising task of MCA is their 

uniform description (probably, except for the two low-

er levels). 

 

Table 2  

Human activity 
 

Level Typical object Dominant form of activity 
of elements 

Cultural Ethnos, people Reproduction and  

development of activity 

Political Government, 

institution 

Institutionalization of 

activity 

Economic Organization, 

enterprise 

Collective practical  

activity 

Social Society Communication activity 

Group, collec-

tive; 

family, genus, 

tribe 

Collective practical  

activity 

Psychic Personality Individual practical  

activity 

Individual Internal activity 

Biological Organism Life activity 

Physical Body Movement 
 

Moreover, the assignment of a particular system to 

a specific class depends on the aspect of its considera-

tion. For example, a social group is itself a non-subject 

natural system. However, when studying the problems 

of managing such a group by other subjects (an indi-

vidual, another group, or government), it must be con-

sidered an artificial subject system, together with the 

control subject. 

For natural non-subject systems, the key factors are 

the mechanisms of their functioning (conditions, prin-

ciples, norms, requirements, and criteria for assessing 

the activity of the system components, both separately 

and during their interaction [5, 6]). Recall that a mech-

anism is a system or device that determines the order 

of some activity [2]. The mechanisms of functioning 

form a multilevel system of nested feedback loops de-

termining the dependence of conditions, principles, 

norms, etc. (including control actions) on previous and 

current performance results and uncertainty factors. As 

a rule, the mechanisms of functioning of non-subject 

systems are reflexive. Some examples include natural 

selection, competition, conflicts, dissemination of ide-

as, etc. These mechanisms provide (self) control of 

such systems. 

In subsystems (ASs or individuals), let us separate 

the material component (for an individual, his body 

and material means of activity) and the immaterial 

component (for an individual, psyche; for a collective 

subject, culture). For details, see  

Fig. 1). Experience is a significant part of the im-

material components. 

Experience. Experience is understood [7–9] as: 

1) a set of practically mastered knowledge, skills, 

abilities, and habits (individual experience); 

2) the reflection of the objective world and social 

practice aimed at changing the world in the human 

mind (socio-historical experience, the individual expe-

rience of each individual). 

The category of experience is closely related to 

other categories such as education, technology, and 

culture (Fig. 2).  
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Fig. 2. Experience and related categories. 

 

Indeed, education is the development of experience 

[10] and includes learning. (Learning is the process 

and result of acquiring individual experience [11].) A 

modern survey of mathematical models of learning can 

be found in [11, 12], and a survey of learning models 

in automatic control theory in [13]. 

Technologies are the operational reflection of a 

mass-practice proven and systematized practical expe-

rience [14]. (According to [5], technology is a system 

of conditions, criteria, forms, methods, and means for 

consistently achieving a set goal.)  

Culture includes [7]: 

– the objective results of human activity (machines, 

technical structures, results of cognition (books, works 

of art, legal and ethical norms, etc.), representing the 

first component of culture; 

– the subjective human strengths and abilities real-

ized in activities (sensations, perceptions, knowledge, 

skills, production and professional skills, the level of 

intellectual, aesthetic, and moral development, 

worldview, the methods and forms of mutual commu-

nication of people, etc.), representing the second com-

ponent of culture [15]. 

The objective results of human activity (the first 

component of culture) are reflected in different forms 

of social consciousness such as language (understood 

in a broad sense–both natural native and foreign lan-

guages and artificial languages), everyday conscious-

ness, political ideology, law, ethics, religion (or athe-

ism as anti-religion), art, science, and philosophy [15]. 

The second component of culture is subjective hu-

man strengths and abilities. They are expressed in per-

sonal knowledge, including figurative, sensory 

knowledge, which is not transferred by words (con-

cepts), as well as in skills, the development of certain 

individual abilities, the worldview of each person, etc. 

[7]. 

Here are some quotes and definitions that charac-

terize the concept of culture: 

– “a set of genetically non-inherited information in 

the field of human behavior” (Yu.M. Lotman); 

– a set of sustainable forms of human activity (or-

ganizational culture); 

– “Just as the embryo in the womb repeats in a fan-

tastically accelerated time scale the entire evolution of 

life on Earth over a billion years, so a growing person 

in 20 years must assimilate the culture that mankind 

has created for 4 million years.” [7, p. 32]; 

– a set of accepted standard norms of activity 

(ways of standardizing and regulating behavior) and 

the corresponding results. The main function of culture 

is the reproduction and construction (development) of 

activity. 

Thus, culture can be viewed as a generalized expe-

rience proven by social practice [7, 12, 16, 17]; see 

Fig. 1. 

Experience can be formed through independent ac-

quisition by a subject (individual or collective) during 

his activity or through the development of someone 

else’s experience during learning activity (Fig. 3).  

 

 
 

Fig. 3. Formation of experience. 

 

Depending on the methods and means of fixing and 

translating the experience (or even more broadly––in 

the case of an individual––the components of the psy-

che, when relating ideas, beliefs, attitudes, personality 

worldview, etc. to the widely interpreted experience), 

we can distinguish among: 

– explicit experience, which is often translated in 

the form of text (e.g., knowledge, or technology); 

– tacit experience (tacit knowledge), which is often 

translated in non-verbal and non-textual forms (e.g., 

beliefs, or worldview); 

– nontranslated components, which are, perhaps, 

translated “biologically” (e.g., biopsychic properties of 

an individual; the specific physiology of individuals, 

conditioned by climate, landscape, and lifestyle), but 

so slowly that they can be considered unchanged. 

Education Technologies 

Culture 

Experience 
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The types of experience are listed in Table 3.  

 

Table 3  

Types of experience 

 

Level Experience 

Social system Social 

Group Collective 

Personality Individual 

 

In the process of his activity, a subject can partici-

pate (Fig. 4) in: 

1) mastering social experience; 

2) forming/acquiring individual experience; 

3) mastering collective experience; 

4) forming collective experience; 

5) forming social experience. 

Mastering social and/or collective experience can 

be conventionally regarded as “learning with a teach-

er,” and forming individual experience as “learning 

without a teacher.”  

 

 
 

Fig. 4. Individual, collective, and social experience. 

 

The goal of this study is to create a general experi-

ence formation model that would adequately and uni-

formly describe the processes of forming and master-

ing individual, collective, and social experience (Fig. 

4), explicit or tacit, at various levels of activity (Table 

2) in any classes of systems (Table 1).  

The remainder of this paper is organized as fol-

lows. In Section 1, a general experience formation 

model is introduced. Section 2 provides a classification 

system for different models of experience. Sections 3 

and 4 consider several particular models for form-

ing/mastering individual and collective/social experi-

ence, respectively. The Conclusions section outlines 

some promising lines for further research. 

1. GENERAL EXPERIENCE FORMATION MODEL 

 

We extend the original learning model (see subsec-

tion 3.3.4 of the book [18]) by supplementing it with 

the following effects: environment variability, making 

experience outdated (or, equivalently, forgotten/lost), 

and a more complex formation of experience, with 

mastering experience by other subjects and the interac-

tion of different subjects.1  

Let an AS be composed of a given set 

N = {1, …, n} of active elements (AEs). (An AE is an 

element of an active system representing an individual 

or a lower-level AS.)  

Assume that each AE observes one of K possible 

values of an uncertainty factor (UF) in each period. In 

the general case, the values observed by different AEs 

will differ. We introduce the concept of a complex un-

certainty factor: its current value will be characterized 

by the aggregate of all states encountered by all AEs in 

period t.  

A complex UF can be represented as a matrix 

( ) ω ( )ikt || t ||ω  with binary elements ( ω ( ) {0; 1}ik t  ). 

Suppose that in a current period t, the UF for AE i has 

state k(i). Then the elements ωik(i)(t) are 1, and the oth-

ers are 0. Obviously, the matrix ω ( )ik|| t ||  satisfies the 

condition  
1

ω 1, 1,
K

ik

k

t i n


  .  

We denote by Ω the set of all such matrices. (Its 

cardinality is Kn). On the set Ω we define a time-

varying probability distribution {pω(t)} for the states of 

the complex UF of the environment, assuming that the 

current state ω(t) occurs independently of the previous 

ones. We number the elements of this set using the 

function ι(ω) = 1

1 1

ω
n K

i

ik

i k

kn 

 

 .  

Therefore,  ( ) ( ) 1p t p t  
 

   .  

In a particular case, the states observed by each of 

the AEs are mutually independent. We denote by pik(t) 

the probability of observing state k by AE i, where 

                                                           
1 In the proposed model, we will not separate the effect of physio-

logical forgetting of experience from the effect of rejecting the 

previously learned experience when new technologies appear. Sep-

aration of two effects, generally speaking, different by their nature 

and speed – the objective change in technologies and the resulting 

hard or soft rejection of experience (depending on the distribution 

of the AE parameters) and the subjective physiological forgetting 

of it together with a regular trend towards age-related changes in 

the parameters of the AE cognitive characteristics – will allow us 

to analyze several social effects (cultural interaction of generations, 

a decrease in collective experience (including culture) in revolu-

tionary periods, etc.) by varying their speeds. The effects men-
tioned above can become the subject matter of further research.  
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1

( ) 1 1
K

ik

k

p t , i ,n


  , and by k(i) the state observed by 

AE i. Then 
ω (i)

1

( ) ( )
n

ik

i

p t p t


 .  

Let us describe the AS state by a matrix 

( ) ( )ikt || v t ||v  as follows. Each element is a binary 

variable characterizing the formation of experience 

(within the mathematical model, this process will also 

be called mastering the technology) by the AE for var-

ious states of the UF. More precisely, each element 

vik(t) takes value 1 if, after period t, AE i has 

formed/mastered the experience under state k of the 

UF. 

Suppose that the AS evolves during period (t + 1) 

under the following mechanism.  

Let the complex UF have a state ( 1)t ω , and let 

AE i encounter state k of the UF. Then:  

 For any UF state l unmastered by AE i 

(vil(t) = 0), the experience is formed (vil(t + 1) = 1) with 

a probability 0 ≤ wikl({v(∙) | t – τ; t}) ≤ 1, which gener-

ally depends on time as well as on the current v(t) and 

τ previous AS states; the experience is not formed with 

the probability 1 – wikl({v(∙) | t – τ; t}), which implies 

vil(t + 1) = 0. In the sequel, {v(∙) | t1; t2} will denote the 

history, i.e., an ordered set of values v(∙) on a time in-

terval between periods t1 and t2 inclusive. (If t2 = t1, 

there is no history.)  

 For any UF state l mastered by AE i (vil(t) = 1), 

the experience is forgotten (vil(t + 1) = 0) with a prob-

ability 0 ≤ uikl({v(∙) | t – τ; t}) ≤ 1, which generally de-

pends on time as well as on the current v(t) and τ pre-

vious AS states; the experience is not forgotten with 

the probability 1 – uikl({v(∙) | t – τ; t}), which implies 

vil(t + 1) = 1.  

This mechanism is illustrated in Fig. 5.  

The semantics of this model reflects the possibility of 

forming experience, particularly, mastering technology 

by an active element, transferring knowledge from one 

element to another, forgetting knowledge and/or mak-

ing it outdated, among other things, due to the evolu-

tion of the environment and the repeated adaptation of 

the AS to changes in the environment, reflected by the 

realized UF values. 

In this case, for each UF state, the process of form-

ing-forgetting experience by each AE is supposed to 

be binary (possible states = <mastered | unmastered>) 

and random, which reflects its uncertainty. For differ-

ent AEs and different UF states, the transitions be-

tween states occur independently of each other. By 

assumption, there can be no more than one event dur-

ing one period: forming experience or forgetting it. At 

 
 

Fig. 5. Alternative events in period t. 

 
the same time, as the probabilities of transition be-
tween states depend on the current and previous states 
of all AEs in the AS, the model describes rather com-
plex laws of the AS behavior. For example, observing 
one state, an AE can generally form an experience cor-
responding to another UF state (by acquiring the expe-
rience from another AE). 

Now we write dynamic equations for the probabili-

ties of mastering experience and the expected experi-

ence maturity levels. Let ( ) || ( ) ||ikt q tq , where 

qik(t) = Pr(vik(t) = 1) = E[vik(t)] is the probability that 

state k of the UF is mastered by AE i after period t. 

Then by the rule of total probability yields  

qik(t + 1) = Pr(vik(t + 1) = 1 | vik(t) = 0)  

Pr(vik(t) = 0) + Pr(vik(t + 1) = 1 | vik(t) = 1)  

 Pr(vik(t) = 1) = Wik(q(t)) (1 – qik(t)) + 

+ (1 – Uik(q(t))) qik(t) = Wik(q(t)) + 

+ [1 – Wik(q(t)) – Uik(q(t))] qik(t),            (1) 

where the functions Wik(v(t)) and Uik(v(t)) are the prob-

abilities of mastering and forgetting, wikl{∙} and uikl{∙}, 

respectively, averaged by the UF states considering 

their probabilities pm(t) and the probabilities of the AS 

states in the current and previous periods:  

 

 
( )... ( )

1

0

( ),

( ( )) ( )

{ ( ) }

{ ( ) }, ,

;

( ), ;

n

ik

K

m

m

imk

z t

ik

t t

W t p t

w |

|

t  t    t

 t    t i k







 


 

 

 



 




z z

qz

q

z        (2) 

 

 
( )... ( )

1

1

( ),

( ( )) ( )

{ ( ) }

{ (

;

( ) }, ,), ;

n

ik

K

m

m

imk

z t

ik

t t

U t p t

u |

|

t  t    t

 t    t i k







 


 

 

 



 




z z

qz

q

z            (3) 
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where π({z(∙), q(∙)|t – τ; t}, i-, k-) are the conditional 

probabilities that after periods {t – τ; t} the AE states 

have the values z(∙) and the probabilities of mastering 

have the values q(∙) given a known value of the experi-

ence maturity level under UF state k after period t. The 

conditional probabilities π(∙) are calculated by formula 

(4) with the product taken over all triplets < α; β; γ > 

except for < α; β; γ > = <i; k; t >:  

1 ; 1 ; ;

; ; ; ; ;

( )

( ) ( )

{ ( ) }, ,

(

+ (1 ( )) (1 ( )

( ), 

).

;

)

...n ...K t ...t

s i k t

y z

| i k t

y z

   t

 

   

    

 

 

 

  

 











 



qz

            (4) 

In a particular case when the UF states observed by 

each AE are independent, the expressions (2) and (3) 

take the form   

   

 

(i)

1

( )... ( )
0

( )

( )

( ) ;

(

( ( ))

{ }

{ ( ) }, ,), ;

ik

n

ik

i

ik

z t

ik

t t

p t

t  t   t

 t    

W t

w |

| i kt



 












  

 

 






z z

q

z

z

y

 

and 

   

 

(i)

1

( )... ( )
1

( )

( ).

( ) ;

( )

( ( ))

{ }

{ ( ) },, ; ,

ik

n

ik

i

ik

k

t t
z

i

t

p tt

u |

| i

U

t

k

 t   t

 t    t



 



 





 

 





  




z z

z

z

q

q

 

Well, we have obtained the recurrence relations 

reflecting the dynamics of the expected experience 

maturity levels. To calculate their values in any period, 

it remains to specify the initial value matrix q(0). By 

default, suppose that in the initial (zero) period, the AE 

has no experience for any of the FN states. 

Let the individual experience criterion Li(t) (“learn-

ing level”) of AE i be the probability of realizing a UF 

value previously encountered, successfully mastered, 

and not forgotten by him (i.e., the expected share of 

the learned values):  

Li(t) = 1 – 
1

( ) (1 ( ))
K

ik ik

k

p t q t


 , 1,i n .  (7) 

By analogy, let the collective experience criterion 

Lmax(t) be the probability of realizing a UF value pre-

viously encountered, successfully mastered, and not 

forgotten by at least one AE:  

Lmax(t) = 1 – 
1

(1 ( ))
n

i

i

L t


 ,                (8) 

or the probability Lmin(t) of realizing a UF value previ-

ously encountered, successfully mastered, and not for-

gotten by each of the AEs:  

 Lmin(t) = 
1

( )
n

i

i

L t


 .                   (9)  

A sequence of experience criterion values will be 

called an experience curve, similar to the concept of a 

learning curve. 

The collective experience criterion can be treated 

as an aggregate characteristic of the experience formed 

by the entire group. 

Transition to continuous time. Let the AS and 

AE operate in continuous time: the processes of form-

ing and forgetting experience are independent flows of 

elementary events, whose intensities (rates) 

wikl({v(∙) | t – τ; t}) and uikl({v(∙) | t – τ; t}) in a known 

way depend on the history of the AS states at the cur-

rent and previous time instants {v(∙) | t – τ; t}. 

Assume that the UF changes its states somehow (in 

discrete or continuous time), independently of the AS, 

and the evolution of {pik(t)} is known. 

Then the system of difference equations (5), de-

scribing the AS dynamics with given initial conditions, 

can be replaced by the system of differential equations 

of the form  

dqik(t) / dt = Wik(q(t)) – 

– (Wik(q(t)) + Uik(q(t))) qik(t).           (10) 

 

2. CLASSIFICATION OF EXPERIENCE MODELS 

 

The expressions (1)–(10) describe the process and 

result of forming individual and collective experience 

in the most general case––under minimum assump-

tions. For an operational description and study, it is 

necessary to make some simplifications (additional 

assumptions about the structure and properties of the 

model). Therefore, we introduce a system of classifica-

tions based on the properties of the model components. 

(Note that classification bases 1–9 are mutually inde-

pendent.) 

1. Properties of complex UF states observed by 

AE in each period. For now, we will separate the gen-

eral case (considered above) and a particular case in 

which all AEs observe the same realization of the UF 

state in each period. The UF properties will be de-

scribed not by the n K-dimensional distribution 

{pω(t)}, but by the K-dimensional one {pk(t)}, where 

1

( ) 1
K

k

k

p t


 . 

2. Dependence of complex UF states on time. 

Here, the general case (see above) is an arbitrary 

known dependence of the probability distribution of 

the complex UF states on time, and the particular case 

is a stationary (time-invariant) distribution. 
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3. Dependence of the probability of mastering 

on time. The general case (see above) is an arbitrary 

known dependence of the probability of mastering on 

time, and the particular case is no dependence. 

4. Dependence of the probability of forgetting on 

time. Similar to item 3. 

5. Dependence of the probability of mastering 

on process history. The general case (see above) is a 

known dependence of the probability of mastering on 

τ t  previous states. Also, we will separate two sub-

cases: τ 0  (the history-invariant probability of mas-

tering) and τ 1  (the probability of mastering de-

pends only on the previous state). 

6. Dependence of the probability of forgetting on 

process history. Similar to item 5. 

7. Dependence of the probability of mastering 

for AE i on the states of other AEs. The general case 

(see above) is a known dependence of the probability 

of mastering on the states of all AEs. An “intermedi-

ate” case is when the probability of mastering for AE I 

depends on the states of his “neighbors” – AEs from a 

known set Ni(t). The particular case is when for each 

AE, the probability of mastering depends on his states 

only. 

8. Dependence of the probability of forgetting 

for AE i on the states of other AEs. Similar to item 7. 

9. Possible experience formation regardless of 

realized UF state. The general case is when, by trans-

ferring experience from other AEs, a specific AE can 

form his experience corresponding to a UF state that 

differs from the state observed by him. The particular 

case is when an AE forms an experience corresponding 

only to the UF states observed by him. 

10. Number of AEs. The general case is a known 

number of AEs, n > 1. The particular case is n = 1. 

Consider several models in the order of complica-

tion. (Models 1–6 correspond to individual experience, 

whereas models 7–12 to collective and social experi-

ence.) 
 

3. MODELS OF INDIVIDUAL EXPERIENCE 

 

Model 1 ([14, Section 2.2]), in which there is one 

AE, all parameters are time-invariant, the experience 

corresponding to the UF state observed by the AE is 

formed effectively (the probability of mastering is 

equal to 1), and there is no forgetting.  

We denote by pk > 0 the probability that in a next 

period, the AE will encounter UF state k. (Obviously, 

1

1
K

k

k

p


 .) The vector of these probabilities is 

P = (p1, …, pK).  

In the case under consideration, n = 1 and i = 1, 

which implies m = l. Since the probability of mastering 

is 1, let Wmj({v(∙) | t – τ; t}) = 1 for m = l and 

Wmj({v(∙) | t – τ; t}) = 0 for m ≠ l regardless of the his-

tory {v(∙) | t – τ; t}, i.e., Wmj({v(∙) | t – τ; t}) = δmj, 

where δm is the Kronecker delta. Due to no forgetting, 

we have umj({v(∙) | t – τ; t}) ≡ 0 and Uj(q(t))

( ( )) 0jU q t  . From the expression (2) it follows that  

 

 

 

 

( )... ( )

( )

1

;

...

0

1 ;
0
( )

( ( )) ( )

{ ( ) ;

( ) ;

}

{ }, , ( )

( ) ( ).

j

j

j

z

K

m

m

mj

X
z t

K

m mj j

m

t

X
z

t

z t z t
t

z

U

z t  t    t

z

q t p t

W |

| j q t

p t p

t  t    t

t










 


 

 

 

  









 

          (11) 

Really, the Kronecker delta is taken once in the 

sum 

 
( ).. ( ;. )

0j

z t z t

mj

X
z t

 


  because zj(t) = 0, and this condition 

reduces the sum to a single element for which m = j. 

As a result,  

qj(t + 1) = pj(t) + [1 – pj(t)] qj(t).  
Since the probabilities are stationary, 

qj(t + 1) = pj + (1 – pj) qj(t), or Δqj(t + 1) = pj (1 – qj(t)), 
or 1 – qj(t + 1) = (1 – pj) (1 – qj(t + 1)). According to 
(8), the experience criterion is 

1 1

1

( ) 1 (1 ( )) 1 (1 )

(1 ( 1)) 1 (1 )

K K

k k k k

k k

K
t

k k k

k

L t p q t p p

q t p p .

 



      

     

 



      (12) 

Model 2. Consider a modification of Model 1 in 
which there is a unique UF state (K = 1), but the prob-
ability of mastering (0, 1]w  can be smaller than 1. 

Omitting the UF state subscript, by analogy with the 

expression (19) we obtain: ( ( ))q tW w ,  

qj(t + 1) = w + [1 – w] qj(t), 
or 1 – qj(t + 1) = (1 – w) (1 – qj(t + 1)). From (11) it 
follows that the learning curve has the form  

L(t) = 1 – (1 )tw .                     (13) 

(Also, see the expression (12) for w = pk = 1 / K.) 

Model 3. Consider a modification of Model 1 with 

the same stationary probability of mastering 

( ) (0, 1]w q   for all UF states. By analogy with the 

expression (11) we obtain ( ( )) ( ( )) ( )j jq t w q t pW t . Since 

the probabilities are stationary, from (5) it follows that 

qj(t + 1) = ( ( )) jw q t p  + (1 – ( ( )) jw q t p ) qj(t), or 1 – 

– qj(t + 1) = (1 – ( ( )) jw q t p ) (1 – qj(t)). Let the proba-

bility of mastering be a known function ( )g   of the 

current experience criterion value, i.e., 
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w(q(t)) = g(L(q(t))). Then the equality 1 –

 qj(t + 1) = (1 – g(L(t)) pj) (1 – qj(t)) implies 

1 – qj(t) =
1

0

(1 ( ( ))
t

j
p g L





  . 

Denoting bj(t) = 1 – qj(t), we write bj(t + 1) = (1 – 

– g(L(t)) pj) bj(t) and, consequently,  

L(t) = 1 –
1

( )
K

k k

k

p b t


  = 1 –
1

1 0

(1 ( ( ))
tK

k k

k

p p g L


 

   , 

ΔL(t) = g(L(t))
2

1 0

2
(1 ( ( ))

tK

k

k

kp p g L


 

   . 

In the uniform distribution case (pj = 1 / K, 1,i n ), 

we have bj(t) = b(t) and  

L(t) = 1 –
1

( )
K

k k

k

p b t


 =1 – 
1

( )
1K

k

k

b t
K

 =1 – b(t) = q(t).  

Therefore,  

1

1

1

( ) ( ( 1) ( ))

1 1
( ( 1) ( ( ( )) ( 1  ))

1 1
( (

1

1 ( ))

 

( 1

)

))

1

1   1  

K

k k k

k

K

k k

k

K

k

g L t

g L

L t p b t b t

b t b

t

t
K K

b t
K K







 



    

 



  

 







 

1

1
( ( )) ( ))1 1

K

k

b t
K

g L t


    

= 
1

K
 g(L(t – 1)) b(t – 1)) = 

= 
1

K
 g(L(t – 1)) (1 – L(t – 1)), 

which gives  

ΔL(t) = 
1

K
 g(L(t – 1)) (1 – L(t – 1)).         (14) 

Depending on ( )g  , the solution of the difference 

equation (14) can be an exponential, power, or logistic 

curve; see the models of different learning curves and 

a survey in [14]: 

 

Probability of 

mastering 

( )g   
Difference equation 

Learning 

curve 

g(L) = γ K ( ) γ (1 ( 1))L t L t     Exponen-

tial 

g(L) = µ K L ( ) μ ( 1) (1 ( 1))L t L t L t    

 

Logistic 

g(L) = η K (1 

– L)a 

1( ) η (1 ( 1))aL t L t      Power 

Model 4 ([18], subsection 3.3.4]) is the intersection 

of particular cases for the nine classification bases 

above. It differs from Model 1 in the presence of sta-

tionary probabilities of mastering and forgetting, 

which are generally not equal to 1 and 0, respectively. 

Suppose that during the first realization of UF state 

k, the corresponding experience is formed with a 

known probability 0 ≤ wk ≤ 1, where wk is the proba-

bility of mastering, and is not with the probability (1 – 

– wk). After forming component k of the experience, in 

each next period, it changes as follows: 

– If the UF state realized differs from k, then the 

result of mastering state k remains the same. 

– If UF state k is realized again, then component k 

of the experience is “lost” with the probability of for-

getting 0 ≤ uk ≤ 1 and remains the same with the prob-

ability (1 – uk).  

We construct the vectors of the probabilities of 

mastering and forgetting: W = (w1, …, wK) and 

U = (u1, …, uK). Generally speaking, these vectors do 

not satisfy the normalization condition. 

By analogy with the expression (11), we obtain: 

( ( ))j j jtW q w p , ( ( )) j jj q tU u p . Substituting this 

result into (5) yields  

 qj(t + 1) = pj wj + (1 – pj (wj + uj)) qj(t).            (15) 

Let the initial conditions be qj(0) = α [0, 1]j  . 

Then, using the recursive formula (15), we find  

( ) (1 (1 ( )) )+

+(1 ( )) α

j t

i j j j

j j

t

j j j j

w
q t p w u

w u

p w u .

   


 

     (16) 

Substituting the sum (16) into (7), we finally arrive 

at  

   

  

  

1

1 1

1

1 1

1

1 (1 )

( , )

7

, ,
K

t
k

k k k k

k k k

K K
t

k
k k k k k

k k k k

K
t

k
k k k k k

k k k

w
p p w u

w u

w
p w u p

w u

w
p p w u .

w

L P W U

u

t


 



    


     


 
     

 



 



 

Suppose that the AE obtains a reward (payoff) hk 

for successfully forming component k of his experi-

ence in a certain period. Then over T0 periods, his total 

expected payoff from forming the experience during 

his work is given by  

   

0

1 1

,

1

,

1

( , )
T K

k
k k

t k k k

t

k k k

w
p h

w u

p w u .

F P W U T
 

 


   


 

Calculating the sum of this geometric progression 
in time, we obtain  
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  

  
 

0

0

1

0( , , ,

1 1

) 1
K

k k k
k k k

k k k

T

k k k

k k k

p h w
T p w u

w u

p w u

F P W U T

.
p w u



    


  


 




 

In the homogeneous case (for all states, the proba-
bilities of mastering and forgetting are wk = w and 
uk = u), from the expression (17) it follows that  

  
1

1 1( , , , )
K

t

k k

k

L
w

p p wP w u u
w u

t


 
    

  
 ,  

t = 0, 1, 2, …                  (18) 
In a particular homogeneous case (w = 1 and u = 1 

under the uniform probability distribution), 

1 1 2
1(

2 2
)

t

K
L t

 
   

 
. (The asymptote 0.5 means that the 

fact of forgetting is discovered during the repeated re-
alization of the mastered UF state.)  

Let us introduce the following assumption, known 
as the learnability condition [18]: the probabilities P, 
W, and U are such that  

pk (wk + uk) < 1, 1,k K .              (19) 

As was demonstrated in [18], condition (19) can be 
violated at most for one UF state. Moreover, under 
assumptions I–VI:  

– The initial value of the experience criterion is 0.  
– The experience curve is not decreasing and as-

ymptotically tends to 
1

K
k

k

k k k

w
p

w u 
 ; in addition, its 

growth rate is monotonically decreasing.  

Introducing a threshold ρ [0,1 ]/ K , we denote 

by Pρ, K = {P = (p1, …, pK) | 
1

1
K

k

k

p


 , pk   ρ, k = 1, K } 

the set of K-dimensional probability distributions 
whose values are all not smaller that ρ.  

As was established in [14], an analog of the expres-
sion (17) achieves maximum over all possible proba-
bility distributions P  Pρ, K at the uniform distribu-
tion. We present a similar result for the model under 
consideration.  

Proposition 1. If  

wk (0, 1] , uk [0, 1) , 1,k K ,           (20) 

then ρ ∈ (0, 1/K] ∃ t(ρ, W, U) = 

1

2
1

min{ }k k
k ,K

w u



 

 

such that  τ > t(ρ, W, U) the function (17) is strictly 
concave in {pk}  Pρ, K.   

Proof. Denoting  

(0, 1], (0, 2), 1,k
k k k k

k k

w
w u k K,

w u
       


  

we write the expression (25) as  

 
1

1 1( , , )
K

t

k k k k

k

t p px P W U


    
  .    (21) 

Differentiating the expression (21) twice, we easily 
check that the condition  

t > 

1,

2
1

min{ }k
k K


 

 

guarantees the strict concavity of the function (21) in 

all variables {pk}  Pρ, K. ♦ 

Corollary. If  

uk = kw  – wk, 1k ,K ,                (22) 

then the uniform probability distribution pk = 1/K, 

k = 1, K  is a unique solution of the problem  

τ ( , , )x P W U  
ρ, 

max
KP P

 .                (23) 

This fact follows from Proposition 1 and the sym-
metry of the function (17) in all variables {pk}   Pρ, K 
under condition (22). (Also, see the proof of Proposi-
tion 4 in [14]). Note that condition (22) implies the 
learnability condition (19).  

Thus, in the presence of forgetting and the non-
unitary probabilities of mastering, the uniform proba-
bility distribution is generally not optimal in the prob-
lem (23); a sufficient condition for its optimality is 

given by (22), where (0,1]kw  . 

In the homogeneous case, for the uniform probabil-
ity distribution to be optimal in the problem (23), it 
suffices to satisfy the relation w + u = 1, under which 
condition (19) always holds and a particular case of 
which is the basic model with w = 1 and u = 0.  

Substituting the uniform probability distribution 

pk = 1/K, k = 1, K , into the expression (18), we obtain  

 

( , , )

1 exp γ( , , ) ],

1 1

[

t

tx K w u

 –    K w u t

w w u

w u K

w

w u

  
       










 

where γ(K, w, u) = ln(1 + 1/(K – (u + w))) is the rate of 

forming experience. Since ( ) (0, 2)w u  , the 

learnability condition (19) will be satisfied if K ≥ 2.  
Model 5 (learning and productive activity). As-

sume that the AE has a foresight horizon T0. In this 

horizon, the first 0{0, 1, ..., }T T  periods are occu-

pied by learning. In the initial period, the subject 
chooses an allocation X = (X1, …, XK) of his time (the 
same for all T future periods) among K possible activi-
ty types, where Xk is a share of his time for forming 

experience in activity type k and 
KX 

 = 
1

{ | 1}
K

K

k

k

s s



  .  
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Suppose that there is no forgetting. Then from the 

expression (16) we obtain the following expectation 

that component k of the AE experience is successfully 

formed after period t: 

qk(Xk, t) = 1 (1 )t

k kw X  , 1,k K .          (24) 

The vector q = (q1, …, qK) in learning models will 

be called the AE’s qualification.  

Upon completing the learning process, the AE pro-

ceeds to productive activity. (By assumption, there is 

no learning during productive activity.) In each period 

of this activity, UF state k is realized with a probability 

pk, which forces the AE to perform the complex activi-

ty of type k. If the experience corresponding to activity 

type k is formed by the given period, the AE performs 

this type of activity and obtains a reward hk; otherwise, 

he obtains nothing. 

Thus, in each period 0{ 1, ..., }t T T   of his pro-

ductive activity of type k, the AE obtains the expected 

“income” hk qk(T), which is the expectation of obtain-

ing the reward hk in the case of successfully achieving 

the result of activity k. (If the corresponding experi-

ence is formed and not forgotten by the AE, the result 

is achieved.) The AE’s objective function in period t 

has the value f(X, t) = 
1

( , )
K

k k k k

k

h p q X T


 , 

0{ 1, ..., }t T T  . (There is no learning during produc-

tive activity, and hence the probabilities of successful-

ly achieving the positive results are determined by the 

learning results achieved by the end of learning.) 

Consider the AE’s time allocation problem: max-

imize the expected “income” per unit time of produc-

tive activity,  

1

( , )
K

k k k k

k

h p q X T


 max
KX

 .              (25) 

Substituting the difference (24) into (25), we write 

this problem as  

1

(1 )
K

T

k k k k

k

h p w X


 min
KX

 .               (26) 

1(1 ) λT

k k k k kh p w T w X   ;  

1

1

1 λ
(1 )

T

k

k k k k

X
w h p w T

 
  

 
; 

1 1
1

1

1 1 1

1 1 1
λ 1

T
T

K K K

k

k k kk k k k k

X
w w h p w T




  

 
   

 
   ;  

1

1

1

1

1

1

1
1

λ .

1 1

T

T

K

k k

K

k k k k k

w

w h p w T













 
 
 





 

Solving the constrained optimization problem (26), 

we find the AE’s optimal time allocation for learning:  

 
1

1
1

1*

1

1

1
1

1
1

1
( )

T
T

K

j j

k K
k

k k k j j j

j j

w
X

w
h p w h p w

w








 
 

  
 
 
 
 




, 

1,k K .                       (27) 

In a particular case (the unitary probabilities of 

mastering and the same “incomes” from different ac-

tivity types) we have   

   11

*

11

1

1
1

1
TT

k K

k j

j
j k

K
X

p p






 

 
.             (28) 

The solution (27) and (28) of the problem (26) with 

a fixed value T being available, we can formulate the 

AE’s optimal learning time problem as follows. If in 

each period of learning the AE bears fixed costs 0c  , 

then the problem is to choose a period to terminate the 

learning process by maximizing the difference between 

the expected income and costs:  

f(X*, T + 1) 0( )T T  – c T 
0[0; ]

max
T T

 .        (29) 

Substituting the difference (28) into (29), we arrive 

in the scalar optimization problem 

0( )T T

 
1

1

1

11

1

1
1

1

1
( )

T

T
T

T
K

K
j j

k k T
Kk

k k k j j j

j j

w
h p

h p w h p w
w










  
      

  
   
  






 – 

– c T 
0[0; ]

max
T T

 .                    (30) 

The solution of the problem (30) will give the AE’s 

expected payoff under sequential learning and produc-

tive activity. An alternative is learning during work: 

during all T0 periods some UF states are realized, and 

the AE forms the corresponding experience of practi-

cal activity, achieving a positive result (and obtaining a 

“reward” for it) through mastering. Assume that under 

learning during work, the AE bears costs c in each pe-

riod. In the absence of forgetting, due to the expression 

(25), his total expected payoff will be 

    0

1

1

0

0

0

0

1

)

31

( , ,
K

k k

k

T

k k k k

p h

T p

F P W T с T

w p w cT .





 

  
 



 


 

The expressions (30) and (31) can be compared in 

each particular case (for specific values of the model 

parameters) to answer the following question: which 
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strategy – sequential learning and productive activity 

or learning during work – is more beneficial for the 

AE in terms of the total expected payoff?  
Example 1. Let the probabilities of mastering be 1, dif-

ferent activity types yield the same “income,” and the prob-

ability distribution be uniform. Then from the expression 

(28) it follows that 
* 1/kX K . The optimization problem 

(30) takes the form  0( ) 1 (1 1 )TT T h / K    – c T 
0[0; ]

max
T T

 ; 

see the concave curve in (28), illustrating the dependence of 

this objective function on T.  

In this case, the AE’s total expected payoff under learn-

ing during work (formula (31)) is h[T0 – (1 – 1/K)

  0 1
1

T
/ K


  cT0; see the horizontal line in T.  

Let K = 10, T0 = 100, and h = 4. For c = 2, there exists 

an optimal learning time (18 periods) during which sequen-

tial learning and productive activity yield a higher total ex-

pected payoff (approximately 242.8) than learning during 

work (approximately 200.0). If the costs per unit time de-

crease (e.g., c = 1), the optimal choice is learning during 

work; see the optimal choice is learning during work; 

see Fig. 6a vs. Fig. 6b. ♦  

A similar model can be constructed in the case of 

nonzero initial conditions for {qj}, in which the opti-

mal solution will depend on the AE’s initial experi-

ence. 

 
 

Fig. 6. AE’s total expected payoffs in Example 1: 

a) с = 2 and b) с = 1 (horizontal line corresponds to learning time T). 

Model 6 (deterministic model with one subject). 
Consider a modification of Model 1 in which there is a 

unique UF state (K = 1) realized with the unitary prob-

ability, and the probability of mastering 

( , ) [0,1]w q t   does not explicitly depend on the histo-

ry. By analogy with (11), omitting the UF state sub-

script, we obtain ( ( ), ) ( ( ), )W q t t w q t t . The expression 

(5) gives the difference equation 

q(t + 1) = ( ( ), )w q t t  + (1 – ( ( ), )w q t t ) q(t). 

The corresponding differential equation (see (10)) 

has the form 

( ) ( ) (1 ),q t w q t q  .                     (32) 

The family of differential equations (32) with an 

initial condition (0) [0,1]q   and a Lipschitz function 

( , ) [0,1]w     as the parameter possesses the following 

properties: 

– The solution of equations (32) exists and is 

unique. 

– The experience curve q(t) is strictly monotonical-

ly increasing and 0 ( ) 1t q t    (its growth rate is 

bounded).  

– The experience curve q(t) is slowly asymptotic, 

i.e., lim ( ) 1
t

q t


  and lim ( ) 0.
t

q t


  

Allowing the effect of forgetting, we obtain the 

family of differential equations with an initial condi-

tion (0) [0,1]q   and two parameters – Lipschitz func-

tions ( , ) [0,1]w     and ( , ) [0,1]u    : 

,( ) ( ) (1 ) ( ),q t w q q u q qt t   .          (33) 

Let us analyze the differential equations (33), char-

acterizing the family of solutions. The following ques-

tion is of particular interest: for which time-varying 

functions ( ) [0,1]q t   is it possible to find Lipschitz 

functions ( , ) [0,1]w     and ( , ) [0,1]u     so that the func-

tion :[0, ) [0,1]q    will be the solution of (33)?  

Proposition 22. A continuously differentiable func-

tion :[0, ) [0,1]q    with a Lipschitz derivative q  

is the solution of equations (33) under some Lipschitz 

functions ( , ) [0, 1]w     and ( , ) [0, 1]u     if and only if 

 0 ( ) ( ) 1 ( )t q t q t q t      .             (34) 

Proof. Conditions (34) are immediate from ( ) [0,1]q t   

and the constraints imposed on ( , )w    and ( , )u   . Converse-

ly, let a function g(t) satisfying the hypotheses of this propo-

sition be the solution of equations (33). Choosing  

( ) := ( ) ( ),w t q t q t  ( ) :=1 ( ) ( ),u t q t q t   0,t      (35) 

we have ( )(1 ( )) ( ) ( ) ( ( ) ( ))(1 ( )) (1w t q t u t q t q t q t q t      

( ) ( )) ( ) ( ).q t q t q t q t   Moreover, from the relations (35) 

                                                           
2 This result was established by S.E. Zhukovskiy, Dr. Sci. (Phys.–
Math.).  
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it follows that ( ) [0,1]w t   and ( ) [0,1]u t   for all 

0.t   ♦ 
Let us find possible equilibria: the right-hand side 

of (33) vanishes for  
( ( ) )

( )
( ( ) ) ( ( ) )

w q t ,t
q t

w q t ,t u q t ,t



. 

According to (35), in the case q(0) = 0, the unique 

experience curve with a stationary (time-invariant) 

probability of mastering γ > 0 is the exponential curve 

q(t) = γ (1 – exp(–t)).  

 

4. MODELS OF COLLECTIVE AND SOCIAL EXPERIENCE 

 

Model 7 (mastering social experience; see arrow 

1 in Fig. 4). The mastering of social experience by a 

subject can be described by modifying the general 

model from Section 1. In the absence of forgetting, 

assume that:  “social experience” contains all the nec-

essary information about optimal actions for any UF 

values and “guides” the subject’s learning; the subject 

sequentially encounters the UF states (for convenience, 

in accordance with their numbering); the same state 

repeats until the probability of forming the correspond-

ing experience component (see formula (13)) 

 1 1 1( )
t

kk wq t    , t = 0, 1, 2, … , 

achieves a given threshold q*. The time (the expected 

number of repetitions) required is  

1 ln(1 )
( )

ln(1 )

*
*

k

k

q
t q

w





. 

Hence, for all K possible UF values, the threshold 

q* will be achieved in the time 1

1

ln(1 )
( )

ln(1 )

*K
*

k k

q
t q

w





 . In 

the homogeneous case, 1 ln(1 )
( )

ln(1 )

* K
* q

t q
w





.  

Model 8 (forming individual experience; see ar-

row 2 in Fig. 4). Generally speaking, Models 1–6 all 

describe the formation of individual experience. We 

will consider a particular case: no forgetting and the 

uniform probability distribution (pk = 1 / K) of various 

UF states. In this case, experience is formed by the 

rule  

1

2 1(
1

) 1

tK
k

k

tL
w

K K
W



 
   

 
 , t = 0, 1, 2, …, 

representing a particular case of formulas (16) and 

(17). 

In the homogeneous case, 2 1 1t

t
w

L
K

 
   

 
. Hence, 

the threshold q* will be achieved in the time 

2 ln(1 )
( )

ln(1 )

*
* q

t q .
w

K






   

Proposition 3. The ratio 

2

1

( ) ln(1 )
1

( )
ln(1 )

*

*
K

t q w

wt q

K


 


, char-

acterizing the relative effectiveness of mastering social 

experience compared to forming individual experi-

ence, is independent of q* and monotonic in w and K.   

Model 9 (mastering collective experience; see ar-
row 3 in Fig. 4). Joint activity of subjects within col-
lectives implies the possibility of exchanging their ex-
perience acquired during the process of activity. (A 
team is a particular case of collectives [19].)  

In the absence of forgetting, assume that: a team 
includes n AEs; for each AE, a certain UF state (same 
for all subjects) is realized with a given probability 
distribution P in each period; the subjects form their 
experience of activity for this state independently with-
in the model (17); after that, the subjects completely 
exchange their information with each other (i.e., all 
team members will form their experience for a certain 
UF state if at least one team member does). The ele-
ments of the matrix W = ||wik|| can be interpreted as the 
effectiveness of “learning by one’s own and someone 
else’s experience” for different subjects under different 
UF states. 

After t periods, team member i will not master UF 

state k with the probability (1 – pk wik)
t, and all team 

members will not master it with the probability 

 
1

1
n

t

k ik

i

p w


 . We obtain the following experience 

curve for the entire team and each team member (the 

probability that none of the team members will en-

counter a new UF state for the entire team):  

 
1 1

3 1( 1, )
nK

t

k k ik

k i

t p pL P w
 

   W , t = 0, 1, 2, …    (36) 

In the case of homogeneous AEs and the uniform 

probability distribution, the expression (38) takes the 

form 3 1 1t

n t
w

K
L

 
   

 
. The threshold q* will be achieved 

in the time 3 ( ) ln(1 ) ln(1 )* * w
t y q n

K
   . Therefore, 

3( )*t q  = 21
( )*t q

n
.   

Proposition 4. The complete exchange of experi-

ence between the subjects reduces the time for forming 

their individual experience proportionally to the num-

ber of AEs participating in this exchange. 

This conclusion is valid under a constant probabil-

ity of mastering w. The decreasing dependence of the 

probability of mastering w(n) on the number of inter-

acting subjects seems to be more realistic. A promising 

line is to consider models with the coefficients wij de-

pending not on the UF states but on the pairs of inter-
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acting AEs (subject i acquiring experience from sub-

ject j).  

Model 10 (forming collective experience; see ar-

row 4 in Fig. 4). Assume that for each of n AEs, a cer-

tain UF state (same for all subjects) is realized with a 

given probability distribution P in each period. The 

effect of forgetting will be described by the matrix 

U = ||uik||. We denote by πikt the probability that team 

member i will master UF state k after t periods. Ac-

cording to the expression (16), 

   π 1 1
t

ik
ikt k ik ik

ik ik

w
p w u

w u
   


. Hence, team mem-

ber i will not master UF state k after t periods with the 

probability  

   1 π 1 1 1
t

ik
ikt k ik ik

ik ik

w
p w u

w u
      



  1
t

ik ik
k ik ik

ik ik ik ik

u w
p w u .

w u w u
   

 
 

None of the team members will master this state 

with the probability  

    
1 1

1 π 1
n n

t
ik ik

ikt k ik ik

i i ik ik ik ik

u w
p w u .

w u w u 

 
     

  
 

We obtain the following experience curve (the proba-

bility that at least one team member will form the ex-

perience for a new UF state realized in period (t + 1); 

see formula (7)):  

Lmax (P, W, U, t) = 1 – 

  

1

max

1

1

1 , 0, 1,

, , )

2

,

,

(
nK

ik
k

k i ik ik

t
ik

k ik ik

ik ik

u
p

w u

w
p w u t ...

w u

L P U t
 


  




   

 

 W

  

(37) 

As noted above, the group/collective experience 

criterion can be either the probability Lmax(t) (at least 

one of the AEs will encounter a previously known, 

successfully mastered, and not forgotten UF state; see 

the expression (37)), or the probability Lmin(t) (each of 

the AEs will do so; see the expression (8)):  

     

1

min

1

( , , , )

1 1 , 0, 1, 2, 38

nK
ik

k

k i ik ik

t

k ik ik

w
p

w u

p w u t . .

U

.

L P t
 


 



    

 W

 

Substantially, the formation of social/collective ex-

perience differs from the formation of individual expe-

rience in that, in order to “consolidate” the methods of 

effective activity under a certain UF state, many sub-

jects must encounter this state many times. In the 

course of modeling, this feature can be reflected, e.g., 

by a low probability of mastering; see Model 12 be-

low. 

Consider the homogeneous case of identical AEs 

(uik = 0 and wik = w) and the uniform probability distri-

bution. Assuming that the probability of mastering is 

less than 1 and there is no forgetting, we reduce the 

expressions (37) and (38) to the following form (also, 

see (36)):  

max ( , , ) 1 1

nt

L n w t
w

K

 
   

 
, t = 0, 1, 2, … , 

min 1( , ) 1,

n
t

w

K
L n w t

  
       

, t = 0, 1, 2, … 

Based on the results for Model 8, we obtain the fol-

lowing experience curve of one AE with the unitary 

probability of mastering for all UF states in the ab-

sence of forgetting (also, see (13)):  

2 1
1 1( =1)

t

tL w
K

 
   

 
, t = 0, 1, 2, …    

Applying trivial transformations to the condition 
2

max ( , , ) = tL n w t L , we establish the following fact.  

Proposition 5. In the case of no forgetting and 
1

1
( ) (1 )nw n K K

K
   , forming collective experience 

with the probability of mastering w(n) is equivalent to 

forming individual experience by an AE with the uni-

tary probability of mastering.  

An alternative version of Proposition 5 is as fol-

lows: in the case of no forgetting and  

1
ln(1 )

( )

ln(1 )

Kn w
w

K







  , 

forming individual experience by an AE with the uni-

tary probability of mastering is equivalent to forming 

collective experience by n(w) AEs with the same prob-

ability of mastering w.   

Model 11 (deterministic model with several in-

teracting subjects).   

Assume that: there is a single UF state (K = 1) real-

ized with the unitary probability; the probabilities of 

mastering and forgetting do not explicitly depend on 

the history (also, see Model 6). Then from the expres-

sion (1) we obtain the system of difference equations 

qi(t + 1) = Wi(q(t), t) + [1 – Wi(q(t), t) – 

– Ui(q(t), t)] qi(t), 1,i n ,                 (39) 

and the corresponding system of differential equations  

( )iq t  = wi(q, t) (1 – qi) – ui(q, t) qi, 1,i n , 

with an initial condition (0) [0,1)ny  and two parame-

ters – Lipschitz vector functions 1:[0;1] [0;1]n n

 w  

and 
1:[0;1] [0;1]n n

 u .   
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The difference equation (39) has a specific struc-

ture with given constraints on the functions in the 

right-hand side. Therefore, we cannot write in its 

terms, e.g., the linear models  

( )

( 1) ( ( ) ( ))
i

i ij j i

j N t

q t a q t q t


    ,          (40) 

where 
( )

1
i

ij

j N t

a


  (see a survey in Section 3.2 of the 

book [10] and the work [200]) or the threshold behav-

ior models [10]    

( )

1
( 1) ( ) δ ( )

| ( ) |
i

i j i

j N ti

q t I q t t
N t 

 
    

 
 ,    (41) 

where ( ) 2N

iN t   denotes the set of “neighbors” of AE 

i in period t, and δ ( ) [0,1]i t   is his “threshold.”   

Therefore, we will proceed by considering the in-

fluence of other AEs not on the state of a given AE 

(the expected level of his experience q) but his proba-

bility of mastering. Let the probability of mastering be 

represented as the sum of two functions,   

Wi(q(t), t) = di(qi) + Di(qi), 1,i n ,       (42) 

taking values from the range [0, 1] but in the sum not 

exceeding 1, where qi = (q1, …, qi1, qi+1, …, qn) is the 

opponents’ experience profile for AE i. 

Some practical examples of such dependencies are 

“the linear model” (with the superscript L) 

WL
i(q(t)) = αi + 

( )

β ( )
i

i ij j

j N t

a q t


 ,            (43) 

which can be compared with (40), and “the threshold 

model” (with the superscript T) 

WT
i(q(t)) = αi + 

( )

1
β ( ) δ ( )

| ( ) |
i

i j i

j N ti

I q t t
N t 

 
 

 
   (44) 

with constants α β 1, 1,i i i n   , which can be 

compared with (41).  

The first term in the right-hand sides of (42), (43), 

and (44) can be interpreted as reflecting an explicit 

experience (directly transferred to the subject and mas-

tered by him), whereas the second term as a tacit expe-

rience (acquired and mastered by the subject indirect-

ly, through interactions with other subjects). 

In this class of models, natural selection (competi-

tion) can be considered, e.g., by letting Wi(q(t), t) → 0 

as 
( )

1
( ) ( )

| ( ) |
i

i j

j N ti

q t q t
N t 

  .   

Example 2. Consider two active elements with the 

same stationary probability of forgetting u and the 

probabilities of mastering 

Wi(q(t), t) = 

3

( )
γ , 1, 2

( ) ( )

i
i

i i

q t
i

q t q t




. In a practical 

interpretation, the AEs compete for a constant amount 

of a resource for each period, distributed between them 

proportionally to their experience. The probability of 

mastering in each period is proportional to the amount 

of the resource received in the past period. The coeffi-

cients of proportionality γi  
can be treated as the indi-

vidual learning aptitudes of the AEs. 

Assume that the AEs differ in the initial values of 

their experience: q1(0) = 0.1 and q2(0) = 0.2; see the 

solid and dashed lines in Fig. 7, corresponding to the 

first and second AEs, respectively. However, despite 

the worse “starting position,” the first AE has a higher 

learning aptitude: 1γ 0 2.  and 2γ 0 1. .   

 

 
 

Fig. 7. Dynamics of AE’s experience in Example 2: 

a) u = 0 and b) u = 0.2 (horizontal line corresponds to time). 

 

In the absence of forgetting, both AEs successfully 

learn and will equally share the resource on a suffi-

ciently long horizon (see Fig. 7a). In the presence of 

forgetting (u = 0,2), the first AE wins the competition 

and will obtain the entire resource on a sufficiently 

long horizon (see Fig. 7b). ♦ 

Model 12 (forming social experience; see arrow 4 

in Fig. 4). Within Model 10, collective experience is 

formed if at least one of the team members forms it. 

Model 12 rests on the assumption that social experi-

ence is formed only if all team members form it. 
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This approach makes the experience criterion mul-

tiplicative over subsets: in the homogeneous case of 

Model 10 (the identical AEs and the uniform probabil-

ity distribution), if the society consists of two subsets: 

1 2 1 2 1 1 2 2, , | | , | |N N N N N N n N n      , then  

min ( , , )L n w t  = 
min 1( , , )L n w t  

min 2( , , )L n w t .  

The expressions Lmax (n, w, t) = 1 – (1– w/K)nt and  

min 1( , ) 1,

n
t

w

K
L n w t

  
       

, t = 0, 1, 2, … , can be 

used for estimating the expected time required for 

achieving a given collective experience level q*, de-

pending on the number of AEs:  

t(n, q*) 
* 1/ln(1 ( ) )

~

ln(1 )

nq

w

K





.                   (45) 

Clearly, the time (45) grows rather slowly with an 

increase in the number of AEs (approximately linearly 

in the logarithm of this number). Since collective expe-

rience grows linearly in the number of AE, we arrive at 

the following result. 

Proposition 6. Social experience is formed approx-

imately by n ln(n) times slower than the collective one.  

Applying trivial transformations to 2

min ( , ) = tL n w,t L , 

we establish the following fact.  

Proposition 7. In the case of no forgetting and 
1

1
( ) 1 1 1 1

n tt

w n,t K
K

 
                  

 

, forming social ex-

perience with the unitary probability of mastering is 

equivalent to forming individual experience by one AE 

with the probability of mastering w(n, t). 

Due to Proposition 7, social experience can be 

viewed as the experience of one integral and virtual 

subject.  
 

CONCLUSIONS 

 

The results of Sections 3 and 4 show that the well-

known learning models [11, 14, 18], including the 

learning curves (20)–(26), correspond to particular 

cases of the general experience model from Section 2. 

As was shown in [14, 18], the learning models, in turn, 

generalize the following models: testing of complex 

systems and checking their characteristics; increasing 

the efficiency of mass production during mastering 

(the model of T.P. Wright and his followers); software 

testing; dissemination of knowledge (ideas, theories, 

concepts) in society; knowledge management and ex-

traction/acquisition; machine learning; iterative learn-

ing and testing of knowledge in pedagogy, psychology, 

and physiology of humans and animals. The surveys 

[14, 18] referred to numerous works on the experi-

ment-based characterization of nontrivial processes 

that underlie learning models. 

Let us outline some promising lines for further re-

search: 

 The formation of experience is an essential 

component of any activity. Therefore, it seems strate-

gically important to develop a general mathematical 

model of complex activity (with operational decompo-

sition and aggregation of particular models) within 

MCA, reflecting the active choice of subjects and con-

sidering the processes of forming their experience. 

 The system of classification bases for experi-

ence models (see Section 2) yields various particular 

models of forming and mastering individual and col-

lective experience. The development and study of such 

models are a well-founded “tactical” step. Here, some 

of the promising areas are as follows: exploring the 

joint formation of experience during work, optimizing 

the duration of learning before the transition to produc-

tive activity, analyzing the impact of forgetting and the 

history length, identifying the role of the time depend-

ence of the uncertainty factor states, revealing the in-

fluence of the experience structure (the logical connec-

tions between its components), and optimizing and 

managing the experience formation process. 

 The experience model proposed above is rich 

enough for describing many phenomena and process-

es: 

– personnel management (recruitment, placement, 

development, promotion, and dismissal) and human 

capital models; 

– risk management and information security man-

agement; 

– evolution (including adaptation, competition, and 

natural selection) in biological systems (involving the 

conventional mathematical apparatus for this range of 

problems – inite automata3 [21, 22], differential equa-

tions [23–25], evolutionary games [26, 27], etc.); 

– different characteristic times and hierarchy for 

the translated (explicit and tacit) and nontranslated ex-

perience, which are considered within psychological 

and sociological approaches; 

– selection, formation, mastering, consolidation, 

and transmission of social experience, considered as 

cultural phenomena. 

 

                                                           
3 The areas of research mentioned here are very extensive. Without 

claiming to be exhaustive, we therefore refer to several classical 
monographs and/or modern surveys.  
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