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Abstract. This paper is devoted to constructing nonelementary linear regressions consisting of 

explanatory variables and all possible combinations of their pairs transformed using binary min-

imum and maximum operations. Such models are formalized through a 0-1 mixed integer linear 

programming problem. By adjusting the constraints on binary variables, we control the structur-

al specification of a nonelementary linear regression, namely, the number of regressors, their 

types, and the composition of explanatory variables. In this case, the model parameters are ap-

proximately estimated using the ordinary least squares method. The formulated problem has 

advantages: the number of constraints does not depend on the sample size, and the signs of the 

estimates for the explanatory variables are consistent with the signs of their correlation coeffi-

cients with the dependent variable. Regressors are eliminated at the initial stage to reduce the 

time for solving the problem and make the model quite interpretable. A nonelementary linear 

regression of rail freight in Irkutsk oblast is constructed, and its interpretation is given. 
 

Keywords: nonelementary linear regression, ordinary least squares method, 0-1 mixed integer linear pro-

gramming problem, subset selection, coefficient of determination, interpretation, rail freight.  
 

 

 

INTRODUCTION  

In regression analysis [1, 2] based on economic da-

ta, special attention is paid to constructing production 

functions (PFs), i.e., mathematical relationships be-

tween production volumes (outputs) and production 

factors. Published in 1986, the monograph [3] was 

entirely devoted to the theory, methods, and applica-

tion of PFs. It considered the following PFs: linear, 

multi-mode, Cobb–Douglas, Leontief, Allen, CES 

(Constant Elasticity of Substitution), LES (Linear 

Elasticity of Substitution), and Solow. At present, new 

modifications of PFs appear; they are investigated and 

are actively used in econometric studies [4–6]. In this 

paper, we construct nonelementary regression models 

specified on the basis of the well-known Leontief PF 

 1 1 2 2min , ,...,i i i l il iy x x x      , 1,i n ,     (1) 

with the following notations: n  is the sample size; l  is 

the number of explanatory variables; iy , 1, ,i n
 
are  

the values of the independent variable y ; ijx , 1,i n , 

1, ,j l  are the values of the explanatory variables 1x , 

2x ,..., lx ; j , 1, ,j l  are unknown parameters; final-

ly, i , 1, ,i n  are approximation errors. In the theory 

of PFs, the variable y  in equation (1) is interpreted as 

the output, whereas 1x ,..., nx  are interpreted as the 

indicators of production factors. 

Note that the monograph [3] also identified the 

“parallel” Leontief function 

 
 

11 1 12 2 1

1 1 2 2

min , ,...,

min , ,..., , 1, .

i i i l il

k i k i kl il i

y x x x

x x x i n

    

     
 

This function reflects a process where the output is 

composed of the outputs of k  parallel production pro-

cesses with fixed proportions of factors using common 

resources. For two production factors 
1x  and

2x , the 

“parallel” Leontief function is called the linear pro-

gramming function. 

According to the monograph [7], the parameters of 

the Leontief PF (1) can be estimated using non-smooth
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optimization methods [8–10], which are often difficult 

to implement. Therefore, the exact estimation of the 

PF (1) was reduced in [7] to a 0-1 mixed integer linear 

programming problem (MILPP) using the least abso-

lute deviations (LAD) method. Note that 0-1 MILPPs 

are also called partially Boolean linear programming 

problems. At the same time, the author [7] proposed 

an approximate estimation method for the Leontief PF 

based on enumerating the estimates from a preformed 

domain. 

The paper [11] introduced a function with the op-

posite meaning to the PF (1): 

 1 1 2 2max , ,...,i i i l il iy x x x      ,  1,i n ,   (2) 

The paper [12] considered the symbiosis of the func-

tions (1) and (2): 

 
 

1 1 2 2

1 1 2 2

min , ,...,

max , ,..., , 1, .

i i i l il

i i l il i

y x x x

x x x i n

    

     
         (3) 

In [11] and [12], the exact estimation of the param-

eters of the regressions (2) and (3) was reduced to cor-

responding 0-1 MILPPs using the LAD method. In the 

modern scientific literature, there is increased attention 

to regression models based on mathematical pro-

gramming; for example, see the papers [13–15]. An 

explanation is recent advances in the technology for 

solving 0-1 MILPPs. 

This paper deals with estimating regression models 

specified based on the Leontief PF using the ordinary 

least squares (OLS) method [1, 2]. Such a problem 

was first formulated in [16] for the regression (1) with 

two explanatory variables. The paper [17] proposed a 

nonelementary linear regression (NLR) of the form 

2

1 2

0

1

, ,

1

min{ , } , 1, ,
l

j j

l

i j ij

j

C

j l i j i i

j

y x

x x i n



  


    

    




        (4) 

with the following notations: 1μ j  and 2μ j , 
21, lj C , 

are elements of the first and second columns of the 

index matrix 2 2lC 
Μ  (its rows contain all possible 

combinations of index pairs of the variables); α j ,

20, lj l C  , and λ j , 
21, ,lj C  are unknown param-

eters. By assumption, all variables in equation (4) have 

strictly positive values. 

Obviously, NLR belongs to the class of nonlinear 

parametric models. But if all parameters λ j , 

21, ,lj C  are assigned definite values, the regression 

becomes linear, and its parameters α j , 
20, ,lj l C   

can be easily estimated using the OLS method. As es-

tablished in the paper [17], the OLS-optimal estimates 

of the NLR parameters λ j , 
21, ,lj C  belong to the 

intervals 

 ( ) ( )

min max,j j

j    , 1,j l ,               (5) 

where 
1 1 1

2 2 2

1, 2, ,( )

min

1, 2, ,

min , ,...,
j j j

j j j

nj

n

x x x

x x x

  

  

     
  

 and 
( )

max

j   

1 1 1

2 2 2

1, 2, ,

1, 2, ,

max , ,...,
j j j

j j j

n

n

x x x

x x x

  

  

  
 
  

. The points 
( )

min

j

j    

and 
( )

max

j

j    cannot be used because of the perfect 

multicollinearity of the variables. 

Due to these properties, an approximate OLS esti-

mation method was proposed in [17] for the NLR (4). 

The method enumerates the values of the parameters 

λ j , 
21, ,lj C  from the intervals (5). 

Unfortunately, the total number of regressors 

grows significantly with increasing the number l  of 

explanatory variables in the NLR (4). Therefore, it 

becomes necessary to select a certain number of the 

most “informative” regressors [7]. Two strategies were 

developed for this purpose in [18]. Each strategy 

forms a set of alternative regressions according to a 

special algorithm; then the approximate OLS estima-

tion method [17] is implemented for each regression; 

finally, the model with the smallest sum of the squared 

residuals is selected. The main disadvantage of the 

NLR construction approach proposed in [18] is the 

exhaustive search of all possible alternatives: it can 

take too much time to select the most informative re-

gressors. A more promising approach involves 0-1 

MILPPs; see below. 

In the paper [19], the selection of the most in-

formative regressors in linear regression estimation 

using the OLS method was reduced to a 0-1 MILPP. 

An open issue in [19] was choosing a large positive 

number M affecting both the speed and solution of the 

problem. It was successfully settled in the next publi-

cation [20]: the 0-1 MILPP formulated therein allows 

constructing a linear regression with a given number 

of explanatory variables, in which the signs of the 

OLS estimates are consistent with the signs of the cor-

relation coefficients between the variables y  and jx , 

1j , l . In the course of computational experiments, 

the conclusion of the paper [21] was confirmed: such a 

problem with constraints on the signs of the coeffi-

cients is solved an order of magnitude faster than 

without them. In this paper, the main goal is to reduce 

the construction of the NLR to the 0-1 MILPP consid-

ered in the paper [20], which is efficiently solvable. 
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1. A METHOD FOR CONSTRUCTING      

NONELEMENTARY LINEAR REGRESSIONS 

The NLR equation (4) contains only one binary 

operation, the minimum. Hereinafter, the binary min-

imum (maximum) is a mathematical operation with 

two arguments that returns their minimum (maxi-

mum). Let us supplement this regression model with 

regressors with the binary maximum: 
2

1 2

2

2
1 2

0 , ,

1 1

, ,

1

min{ , }

max{ , } , 1, .

l

j j

l

j jl

Cl

i j ij j l i j i

j j

C

i j i ij l С
j

y x x x

x x i n

  
 

  


       

    

 


 (6) 

The total number of regressors in equation (6), 
22 ll C , is much greater than in equation (4). 

Equation (6) is introduced for the first time. There-

fore, we pose the following problem: formalize the 

procedure of constructing this model as a 0-1 MILPP. 

This can be done as follows. 

For each parameter λ j , 
21, ,lj C  from equation 

(6), we determine the intervals (5). Then we evenly 

divide each of these intervals by p  points, forming a 

matrix  *λ jk  , 
21, lj C , 1,k p . The element 

*λ jk  of this matrix shows the k th value of the parame-

ter λ j  for the j th pair of the variables. Replacing the 

unknown parameters λ j  in equation (6) with the 

known elements of the matrix   yields 

 

 

2

1 2

2

1 2

*

0 , ,

1 1 1

*

, ,

1 1

min ,

max , , 1, ,

l

j j

l

j j

C pl

i j ij jk i jk i

j j k

C p

jk i jk i i

j k

y x x x

x x i n


 

  


 

 

       

    

 


(7) 

where α jk


, 

21, lj C , 1,k p , are the unknown pa-

rameters for regressors with the binary minimum and 

α jk


, 

21, lj C , 1,k p , are the unknown parameters 

for regressors with the binary maximum. In model (7), 

the total number of regressors is 
22 ll pC , even ex-

ceeding that in model (6). For example, for 100l   

variables and 10p   partitions, the regression (7) has 

99 100 regressors. 

Substituting  
1 2

*

, ,min ,
j jijk i jk iz x x


    and 

 
1 2

*

, ,max ,
j jijk i jk iz x x


   , 1,i n , 

21, lj C , 

1, ,k p  into equation (7) gives the multiple linear 

regression model 

2

2

0

1 1 1

1 1

, 1, .

l

l

C pl

i j ij jk ijk

j j k

C p

jk ijk i

j k

y x z

z i n

 

  

 

 

      

   

 


            (8) 

Following [19], let us reduce the selection of the 

most informative regressors for the linear regression 

(8) with OLS estimation to a 0-1 MILPP. First, we 

normalize all variables of equation (8) using the well-

known rule: subtract from each value of the variable 

its arithmetic mean and divide the result by the stand-

ard deviation. 

For model (8), we write the standardized regres-

sion equation 
2 2

1 1 1 1 1

, 1, ,
l lC Cp pl

i j ij jk ijk jk ijk i

j j k j k

w q h h i n
   

    

            (9) 

where: w  is the normalized variable y ; jq , 1, ,j l  

are the normalized variables jx , 1,j l ; jkh


 and 

,jkh
 21, lj C , 1k , p,  are the normalized variables 

jkz


 and jkz


, 
21, lj C , 1k , p , respectively; β j , 

1, ,j l  and β jk


 and β jk


, 

21, lj С , 1k , p,  are un-

known standardized coefficients; finally, ξ i , 1, ,i n  

are new approximation errors. 

For model (9), the OLS estimates are given by 

1β XX YXR R
  ,                          (10) 

where 

xx xz xz

XX z x z z z z

z x z z z z

R R R

R R R R

R R R

 

    

    

 
 

  
 
 

 is a correlation 

block matrix of dimensions 
2 2( 2 ) ( 2 )l ll pC l pC   . 

This matrix consists of the following blocks:  

 
j kxx x xR r , 1,j l , 1,k l ; 

 
s jkxz x z

R r  , 1,s l , 21, lj C , 1,k p ; 

 
s jkxz x z

R r  , 1,s l , 21, lj C , 1,k p ; 

 
jk sz x z x

R r  , 21, lj C , 1,k p , 1,s l ; 

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 
jk sz x z x

R r  , 21, lj C , 1,k p , 1,s l ; 

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  
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 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 T

YX yx yz yz
R R R R   is the correlation block vector 

of dimensions  22 1ll pC   consisting of the blocks  

 
jyx yxR r , 1j , l ;  

jkyz yz
R r  , 21, lj C , 

1, ;k p
  

jkyz yz
R r  , 21, lj C , 1,k p . 

The coefficient of determination of model (9) is 

given by 
2 2

2

1 1 1 1 1

.
l l

j jk jk

C Cp pl

yx j jk jkyz yz
j j k j k

R r r r 
 

    

          (11) 

Then, using formulas (10) and (11), we state the 

problem of selecting the most informative regressors 

for the linear regression (8): 

2 max,R                              (12) 

 
2

2

1 1 1

1 1

1

(1 ) , 1, ,

l

j k j sk

l

jj sk

C pl

j x x k skx z
k s k

C p

sk yx jx z
s k

M r r

r r M j l







  



 

       

     

 


    (13) 

 
2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

1 1

1

(1 ) ,

l

s jk s s jk

l

s s jk jk

C pl

jk s s sx z z z
s s s

C p

s s jkz z yz
s s

M r r

r r M

  

  

 

  

 

 

       

    

 


 

(14)

 

21, ,lj C
 

1, ,k p  

 
2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

1 1

1

(1 ) ,

l

s jk s s jk

l

s s jk jk

C pl

jk s s sx z z z
s s s

C p

s s jkz z yz
s s

M r r

r r M

  

  

 

  

 

 

       

    

 


 

(15) 

21, ,lj C  1, ,k p  

j j jM M     , 1,j l ,               (16) 

jk jk jkM M
       , 

21, lj C , 1, ,k p     (17) 

jk jk jkM M
       , 

21, lj C , 1,k p ,    (18) 

δ {0, 1}j  , 1,j l ,                  (19) 

δ {0,1}jk

  , 
21, lj C , 1,k p ,          (20) 

δ {0, 1}jk

  , 
21, lj C , 1,k p ,          (21) 

2 2

1 1 1 1 1

,
l lC Cp pl

j jk jk

j j k j k

m
 

    

                 (22) 

where: m  is a given number of regressors; δ j ,

1, ,j l  are the Boolean variables specified by the rule 

1 if the th variable enters into the regression,
δ

0 otherwise;
j

j
 
  

δ jk


, 

21, lj C , 1, ,k p  are Boolean variables speci-

fied by the rule 

1 if the th binary minimum with

δ the th transformation enters into the regression,

0 otherwise;

jk

j

k



 



δ jk


, 

21, lj C , 1, ,k p  are Boolean variables speci-

fied by the rule

 1 if the th binary maximum with

δ the th transformation enters into the regression,

0 otherwise;

jk

j

k



 



finally, M  is a large positive number. 

An advantage of the 0-1 MILPP (12)–(22) is that 

the number of its constraints does not depend on the 

sample size n . 

In the 0-1 MILPP (12)–(22), the strategy for con-

structing the NLR is regulated by constraints on the 

binary variables. Consider the following strategies. 

Strategy 1. Selecting m  regressors in the linear re-

gression (7). 

Here, we simply need to solve problem (12)–(22). 

In this case, the final model may contain several re-

gressors with the same binary operation and with the 

same pair of variables but with different values of the 

parameter λ j . 

Strategy 2. Estimating the NLR (6) approximately 

using the OLS method (without selecting regressors). 

Here, we need to solve the problem with the objec-

tive function (12), the constraints (13)–(21) and 

1

δ 1
p

jk

k





 , 
1

δ 1
p

jk

k





 , 
21, lj C . 

(In other words, for each pair of the variables, each 

binary operation enters into the model with only one 

value of the parameter λ j .) 

Strategy 3. Selecting m  regressors in the NLR (6). 

Here, we need to solve the problem with the objec-

tive function (12), the constraints (13)–(22) and 

1

δ 1
p

jk

k





 , 
1

δ 1
p

jk

k





 , 
21, lj C .           (23) 

Note that by adjusting the constraints on the binary 

variables, we can control the type of regressors in the 
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NLR (6). For example, adding the constraints 
2

1 1

δ 0
lC p

jk

j k



 

   and 

2

1 1

δ 0
lC p

jk

j k



 

  to problem (12)–(22) 

yields the problem of selecting the most informative 

regressors for the linear regression; the constraints 

1

δ 0
l

j

j

  and 

2

1 1

δ 0
lC p

jk

j k



 

 , the same problem for the 

regression with binary minimum operations only; the 

constraints 
1

δ 0
l

j

j

  and 

2

1 1

δ 0
lC p

jk

j k



 

 , the same 

problem for the regression with binary maximum op-

erations only. 

Also, it is possible to control the composition of 

the variables in the model. For this purpose, we intro-

duce a binary matrix  ijV v , 
21, 2 li l pC  , 

1 ,j , l  in which 

1 if the th variable enters into 

the th regressor of model (7),

0 otherwise.

ij

j

v i


 



 

Then integrating the linear constraints 

2

2

2

, ( 1)

1 1 1

, ( 1)
1 1

1, 1, ,

l

l

l

C pl

ij j i l k p j jk

j j k

C p

jki l pC k p j
j k

v v

v i l


  

  


   

 

   

  

 


         (24) 

into problem (12)–(22) allows constructing the NLR 

with m  regressors into which each explanatory varia-

ble enters at most once. In this case, conditions (23) 

naturally hold. 

Unfortunately, for problem (12)–(22), it is not 

completely clear how to specify large numbers M . To 

settle this issue, we adopt the approach from [20]. Let 

us replace the constraints (13)–(18) by the following 

ones: 

 
2

2

1 1 1

1 1

1

(1 ) , 1, ,

l

j j k j sk

l

j jj sk

C pl

j u x x k skx z
k s k

C p

sk yx j ux z
s k

M r r

r r M j l





 

  

 

 

       

     

 


  (25) 

 
2

1 2
1 2

1 21 1 1

1
l

jk s jk s s jk

C pl

jk s s su x z z z
s s s

M r r   
  

  

          

2

1 2
1 2

1 21 1

(1 )
l

s s jk jk jk

C p

s s jkz z yz u
s s

r r M   
  

 

     ,      (26) 

21, lj C , 1,k p , 

 
2

1 2
1 2

1 21 1 1

1
l

jk s jk s s jk

C pl

jk s s su x z z z
s s s

M r r   
  

  

          

2

1 2
1 2

1 21 1

(1 )
l

s s jk jk jk

C p

s s jkz z yz u
s s

r r M   
  

 

     ,       (27) 

21, lj C , 1,k p , 

0
jj j M    , βj J

 ,                  (28) 

0
jj jM    , βj J

 ,                  (29) 

0
jk

jk jk M 
 


   , β

,j k J 
 ,              (30) 

0
jk

jk jkM 
 


   , ,j k J

 
 ,              (31) 

0
jk

jk jk M 
 


   , β

,j k J 
 ,              (32) 

0
jk

jk jkM 
 


   , β

,j k J 
 ,              (33) 

where: βJ


 and J

  are the index sets constructed 

from the set  1, 2,..., l  so that their elements satisfy 

the conditions 0
jyxr   and 0

jyxr  , respectively; β
J 


 

and β
J 


 are the index sets constructed from the set

      2 21, 2 ,..., 1, , 2, 1 ,..., {2, },..., { , 1},..., { , }l lp p C C p

so that their elements satisfy the conditions 0
jkyz

r    

and 0
jkyz

r   , respectively; β
J 


 and β
J 


 are the index 

sets constructed from the set     1, 2 ,..., 1, ,p

  2 22, 1 ,..., {2, },..., { , 1},..., { , }l lp C C p  so that their 

elements satisfy the conditions 0
jkyz

r    and 0
jkyz

r   ; 

finally, β 1/
j jyxM r , 1,j l , and β

1/
jk jkyz

M r   and 

β
1/

jk jkyz
M r  , 

21, lj C , 1,k p . 

To find 
juM


 in the constraints (25), we need to 

solve a series of l  linear programming problems with 

the objective functions minju   subject to the con-

straints 

0
jj M   , 

+

βj J ,                     (34) 

β 0
j jM   , βj J

 ,                      (35) 

0
jk

jk M 



  , β

,j k J 
 ,                  (36) 

0
jk

jkM 



  , β

,j k J 
 ,                   (37) 

0
jk

jk M 



  , β

,j k J 
 ,                  (38) 

0
jk

jkM 



  , β

,j k J 
 ,                   (39) 
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2

2

1 1 1

1 1

, 1, ,

l

j k j sk

l

jj sk

C pl

x x k skx z
k s k

C p

sk yx jx z
s k

r r

r r u j l







  



 

   

   

 


            (40)

 

2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

2

1 1

, 1, , 1, ,

l

s jk s s jk

l

s s jk jk

C pl

s s sx z z z
s s s

C p

s s jk lz z yz
s s

r r

r r u j C k p

  

  



  

 

 

   

    

 


 (41) 

2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

2

1 1

, 1, , 1, ,

l

s jk s s jk

l

s s jk jk

C pl

s s sx z z z
s s s

C p

s s jk lz z yz
s s

r r

r r u j C k p

  

  



  

 

 

   

    

 


  (42) 

2 2

1 1 1 1 1

1
l l

j jk jk

C Cp pl

yx j jk jkyz yz
j j k j k

r r r 
 

    

        .    (43) 

To find 
juM


, we need to solve a series of l  linear 

programming problems with the objective functions 

maxju   subject to the constraints (34)–(43). Simi-

larly, the numbers 
jku

M 
 , 

jku
M 

 , 
jku

M 
 , and 

jku
M 

  are 

obtained by solving a series of 
2

lpC  linear program-

ming problems with the objective functions 

minjku
  , maxjku

  , minjku
  , and maxjku

  , 

respectively, subject to the constraints (34)–(43). 

Thus, by solving the 0-1 MILPP with the objective 

function (12) and the constraints (19)–(22), (25)–(33), 

we construct the linear regression (7) with m  regres-

sors in which the signs of the estimates of the parame-

ters β are consistent with those of the corresponding 

correlation coefficients of the regressors with the vari-

able y . In other words, the following inequalities 

hold: β 0
jj yxr  , 1,j l ; β 0

jk
jk yz

r 
  , β 0

jk
jk yz

r 
  , 

21, lj C , 1,k p . The NLR construction strategy in 

this problem is still regulated, e.g., by constraints (23) 

and (24) on the binary variables. 

As experimentally established in [20, 21], the 0-1 

MILPP (12), (19)–(22), (25)–(33) is solved an order of 

magnitude faster than problem (12)–(22). Moreover, 

since the signs of the estimates of the parameters β are 

consistent with those of the corresponding correlation 

coefficients, the absolute contributions of the variables 

to the total determination 
2

R  are given by 

abs abs

abs 2

β , 1, , β ,

β , 1, , 1, .

j j jk jk

jk jk

x yx j jkz yz

jk lz yz

C r j l C r

C r j C k p

 

 





  

      
   (44) 

They can be used to assess the effect of each regressor 

on the variable y . 

We make two important remarks about the solution 

of problem (12), (19)–(22), (25)–(33). 

Remark 1. As mentioned, the signs of the esti-

mates of the parameters β in the solution are consistent 

with those of the corresponding correlation coeffi-

cients. Hence, all signs of the correlation coefficients 

jyxr  must match the physical meaning of the variables. 

For this purpose, experts from the relevant subject area 

can be involved. Inconsistent variables should be ex-

cluded from consideration. Otherwise, the resulting 

regression will be difficult to interpret. 

Remark 2. For example, suppose that model (8) 

contains the regressor 11 1 2min{ , 8 }z x x
   at the pa-

rameter 11α
. After the transition to the piecewise rep-

resentation, the parameter 11α
 will have either the var-

iable 
1x  or the variable 

28x . If 
11

0
yz

r   , the estimate of 

the parameter 11α
 will surely be positive, and the vari-

ables 
1x  and 

28x  will affect y  with the plus sign. In 

this case, the correlation coefficients 
1yxr  and 

2yxr  

must be positive. (Otherwise, there is a problem with 

interpreting the model.) On the other hand, if 
11

0
yz

r   , 

the estimate of the parameter 11α
 will surely be nega-

tive, and the variables 
1x  and 

28x  will affect y  with 

the minus sign. In this case, the correlation coeffi-

cients 
1yxr  and 

2yxr  must be negative. Therefore, after 

agreeing on the signs of the correlation coefficients 

jyxr , 1,j l , with the experts, it is necessary to form 

the variables jkz


 and jkz


, 
21, lj C , 1,k p , find 

their correlation coefficients with the variable y , and 

eliminate those not satisfying the conditions 

( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  )  

or ( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  ),    (45) 

21, lj C , 1,k p ,  

( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
2

0
j

yxr

 )  

or ( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  ),    (46) 

21, lj C , 1,k p . 

Removing the contradictory variables will natural-

ly decrease the time to construct the NLR. This time 

can be considerably reduced further if we supplement 

the expressions (45) and (46) with the conditions 

jkyz
r r  , 

jkyz
r r  , 

21, lj C , 1,k p ,     (47) 
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where r  is a number chosen from the interval [0, 1]. 

The greater the number r  is, the smaller the number 

of variables will be, and the less time it will take to 

solve the problem. 

2. MODELING 

To construct an NLR, we collected annual statisti-

cal data on the horizon 2000–2020 for the dependent 

variable y  (freight forward by public railway 

transport in Irkutsk oblast, million rubles) and 62 vari-

ables 
1x , 

2x , ..., 
62x , presumably affecting y . First, 6 

variables with the absolute value of the correlation 

coefficient with y  not exceeding 0.2 were removed 

from the list. Then the values of correlation coeffi-

cients for the remaining 56 variables were given to 2 

experts representing the East Siberian Department of 

the Russian Railways. They were asked to eliminate 

the variables for which the signs of the correlation co-

efficients with y  did not correspond to the economic 

meaning of the problem. After the expertise procedure, 

8 factors remained under consideration: 

– the percentage of the working-age population, 

2 ;x   

– labor force (thousand people), 
3x ; 

– the number of pensioners (thousand people), 
5x ; 

– the number of private cars per 1000 people, 
8x ; 

– the number of enterprises and organizations, 
18x ; 

– organizations’ accounts payable (million rubles), 

20x ; 

– electricity production (billion kWh), 
22x ; 

– rail freight tariffs (c. u.), 
58x . 

The value of the variable 
58x  for 2001 was set 

equal to 1000 c. u. It was used to find the other values 

of the variable 
58x  using the known tariff indices. 

For the selected variables, the correlation coeffi-

cients with the variable y  were 
2

0 785yxr . , 

3
0 543yxr . , 

5
0 483yxr .  , 

8
0 446yxr .  , 

18
0 538,yxr .  

20
0 204yxr .  , 

22
0 476yxr . , and 

58
0 465yxr .  . 

These variables affect the variable y  as follows: 

 The growth of the labor force 
2x  and 

3x , as well 

as the growth of the number of enterprises and organi-

zations 
18x  and electricity production 

22x , increases 

the output of products in the region, causing a higher 

demand for rail freight. On the other hand, an increase 

in the variable 
5x  hinders economic development, re-

ducing the demand for rail freight. 

 The surplus of private cars 
8x  reduces the de-

mand for rail transportation (passenger and freight). 

 The growth of organizations’ accounts payable 

20x  has a negative impact on the regional economy: 

for example, it can lead to imposing various penalties. 

 Higher freight tariffs 
58x  naturally reduce the 

demand for rail freight. 

Then, the intervals (5) of the parameters λ j  were 

determined for each pair of the selected variables. To 

form the matrix  , we uniformly divided each inter-

val by four points. As a result, 
2

84 112С   variables jkz


, 

1,28j  , 1,4k  , were obtained with the binary min-

imum operation, and the same number of the variables 

jkz


, 1,28j  , 1, 4k  , were obtained with the binary 

maximum operation. From the 224 variables, we ex-

cluded those not satisfying conditions (45)–(47) with 

0 2r .  (140 variables in total). Thus, the final list in-

cluded 92 variables, of which 8 were explanatory and 

84 were transformed using the minimum and maxi-

mum operations. 

The NLR was constructed by solving the 0-1 

MILPP with the objective function (12) and the con-

straints (19)–(21), (25)–(33). We emphasize that the 

constraint (22) on the number of regressors was not 

applied. The constraints (24) were considered to en-

sure that each explanatory variable entered into the 

final model at most once. The LPSolve IDE solver 

was used to solve the 0-1 MILPPs, and a special pro-

gram in the Delphi environment was developed to 

form mathematical models of the problems for the 

solver. First, the unknown numbers in the constraints 

(25)–(27) were calculated by the program. For that 

purpose, 184 linear programming problems with the 

corresponding objective functions and the linear con-

straints (34)–(43) were solved. Then, the 0-1 MILPP 

problem (12), (19)–(21), (24)–(33) with 284 con-

straints, 92 real and 92 binary variables was formulat-

ed using the calculated numbers and the developed 

program for the LPSolve solver. It was solved on a PC 

with an Intel Core i5 processor (3.40 GHz, 4 cores) 

and 8 GB RAM. As a result, the following NLR was 

constructed in approximately 30 s: 

 

 

(0 6427)

2 18
(13 98)

(0 1129)

5 20
( 3 361)

(0.0843)

8 58
( 2 182)

(0 1063)

3 22
(3 859)

24 5274 1 1895min , 0 000933

0 0196min , 0 006754

0 0323min{ , 0 11725 }

0 0254max{ , 23 079 }.

.

.

.

.

.

.

.

y . . x . x

. x . x

. x . x

. x . x





   




(48) 

Here, the numbers in parentheses below the coeffi-

cients are Student’s t-test values, and the numbers in 
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parentheses above the coefficients are the absolute 

contributions of the regressors to the total determina-

tion (formulas (44)). All regressors were significant by 

Student’s t-test with the significance level α 0 05. . 

The mathematical apparatus proposed in this paper 

does not control the significance of NLR coefficients 

by Student’s t-test or the absolute contributions of the 

variables during the regression construction procedure. 

For significance control, we expect to integrate special 

linear constraints into the 0-1 MILPP in the future. 

The coefficient of determination of the NLR (48) is 
2 0 946183R . , indicating of high quality of the mod-

el. 

The variance inflation factors for the regressors of 

the model (48) do not exceed 10 (no multicollinearity). 

Note that multicollinearity in the 0-1 MILPP cannot 

yet be controlled either. 

Thus, the model (48) is quite interpretable. 

The model (48) in the piecewise form is presented 

in the table. 

 

The equations of model (48) for different ranges of variables 

The NLR equation Ranges of variables 

18 20 58 324.527 0.0011 0.00013 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 58 2224.527 0.0011 0.00013 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 8 324.527 0.0011 0.00013 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 8 2224.527 0.0011 0.00013 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 58 324.527 0.0011 0.0196 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 58 2224.527 0.0011 0.0196 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 8 324.527 0.0011 0.0196 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 8 2224.527 0.0011 0.0196 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 58 324.527 1.1895 0.00013 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 58 2224.527 1.1895 0.00013 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 8 324.527 1.1895 0.00013 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 8 2224.527 1.1895 0.00013 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 58 324.527 1.1895 0.0196 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 58 2224.527 1.1895 0.0196 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 8 324.527 1.1895 0.0196 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 8 2224.527 1.1895 0.0196 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     
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According to the table, the composition of the var-

iables affecting y  changes depending on the condi-

tions satisfied, and the parameter estimates

4 1λ 0 000933, .
  , 16 2λ 0 00675, .

  , 22 2λ 0 117, .
  , and 

12 3λ 23 08, .
   play the role of switching points for the 

following four automatically generated indicators: 

– the ratio of the percentage of the working-age popu-

lation ( 2x ) to the number of enterprises and organiza-

tions ( 18x ); 

– the ratio of the number of pensioners ( 5x ) to organi-

zations’ accounts payable ( 20x ); 

– the ratio of the number of private cars per 1000 peo-

ple ( 8x ) to the rail freight tariffs ( 58x ); 

– the ratio of labor force ( 3x ) to electricity production 

( 22x ). 

Then the following interpretation is valid. 

 If the indicator x2/x18 is not smaller than 

0.000933, the number of enterprises and organizations 

x18 will affect freight forward, whereas the percentage 

of the working-age population x2 will have no effect. 

For example, increasing the number of enterprises and 

organizations x18 by 1 (under fixed values of the other 

variables) raises the freight forward y by 0.0011 mil-

lion rubles on average. However, if the indicator x2/x18 

is less than 0.000933, the percentage of the working-

age population x2 will affect freight forward, whereas 

the number of enterprises and organizations x18 will 

have no effect. For example, increasing the percentage 

of the working-age population x2 by 1% (under fixed 

values of the other variables) raises the freight forward 

y by 1.1895 million rubles on average. 

 If the indicator x5/x20 is not smaller than 0.00675, 

organizations’ accounts payable x20 will affect freight 

forward, whereas the number of pensioners x5 will 

have no effect. For example, increasing organizations’ 
accounts payable x20 by 1 million rubles (under fixed 

values of the other variables) reduces the freight for-

ward y by 0.00013 million rubles on average. Howev-

er, if the indicator x5/x20 is less than 0.00675, the num-

ber of pensioners x5 will affect freight forward, where-

as organizations’ accounts payable x20 will have no 

effect. For example, increasing the number of pen-

sioners x5 by 1000 people (under fixed values of the 

other variables) reduces the freight forward y by 

0.0196 million rubles on average. 

 If the indicator x8/x58 is not smaller than 0.117, 

the rail freight tariffs x58 will affect freight forward, 

whereas the number of private cars x8 per 1000 people 

will have no effect. For example, increasing the rail 

freight tariffs x58 by 1 c.u. (under fixed values of the 

other variables) reduces the freight forward y by 

0.0038 million rubles on average. However, if the in-

dicator x8/x58 is less than 0.117, the number of private 

cars x8 per 1000 people will affect freight forward, 

whereas the rail freight tariffs x58 will have no effect. 

For example, increasing the number of private cars x8 

per 1000 people by 1 (under fixed values of the other 

variables) reduces the freight forward y by 0.0323 mil-

lion rubles on average. 

 If the indicator x3/x22 is not smaller than 23.08, 

the labor force x3 will affect freight forward, whereas 

the electricity production x22 will have no effect. For 

example, increasing the labor force x3 by 1 thousand 

people (under fixed values of the other variables) rais-

es the freight forward y by 0.0254 million rubles on 

average. However, if the indicator x3/x22 is less than 

23.08, the electricity production x22 will affect freight 

forward, whereas the labor force x3 will have no effect. 

For example, increasing the electricity production x22 

by 1 billion kWh (under fixed values of the other vari-

ables) raises the freight forward y by 0.5857 million 

rubles on average. 

Thus, the interpretative characteristics of the NLR 

are richer and more diverse than those of the tradition-

al linear regression model. Moreover, depending on 

the chosen construction strategy, the approximation 

characteristics of the NLR should in most cases ex-

ceed the same characteristics of linear regressions, 

which are only a particular case of the NLR. The pro-

posed NLR are valuable: besides forecasting, they ex-

tract new interpretable mathematical laws to improve 

the efficiency of managerial decisions in various sec-

tors of the economy. 

Also, note that the NLR better suits modeling un-

der multicollinearity conditions than the traditional 

linear regression. The more binary operations the NLR 

has, the higher the number of its degrees of freedom 

will be as compared to the linear regression. This 

means that the NLR can “accommodate” more varia-

bles with fewer regressors than the linear regression. 

For example, the NLR (48) contains only 4 regressors 

but 8 variables, so the chance of its multicollinearity is 

a priori lower compared to a linear regression with all 

8 variables. 

CONCLUSIONS 

This paper has considered the NLR with the binary 

minimum and maximum operations. We have pro-

posed an NLR construction method based on solving a 

0-1 MILPP. The solution of this problem yields the 

structural specification of the NLR and its approxi-

mate OLS estimates. As shown, the structural specifi-

cation of the NLR is regulated through constraints on 

the binary variables. The contradictory variables have 

been eliminated at the initial stage to reduce the solu-
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tion time of the problem and make the NLR quite in-

terpretable. The proposed method has been applied to 

model rail freight in Irkutsk oblast; the resulting NLR 

has revealed new rail freight regularities not available 

within classical linear regression analysis. 

The method proposed above is universal and can 

be used to construct NLRs in any subject area based 

on statistical data with positive variables only. The 

parameter partitioning procedure forms a 0-1 MILPP; 

for a sufficiently large number of partitions, its opti-

mal solution gives estimates slightly differing from the 

optimal OLS estimates of the NLR. Naturally, increas-

ing the number of partitions requires more time to 

solve the problem. Nevertheless, as demonstrated in 

[20, 21] on the linear regression example, such a 0-1 

MILPP is solved an order of magnitude faster com-

pared to standard enumeration procedures. The speed 

of constructing NLRs for different-size samples using 

the proposed method will be tested in subsequent pub-

lications. 
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