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Abstract. When using nonlinear regression models, the estimates of the resulting dependence 

are often difficult or even impossible to interpret. This paper develops nonlinear regression 

specifications in which any estimated parameter, except the free term, can always be given 

some practical interpretation. A multiplicative power-exponential regression generalizing the 

Cobb–Douglas production function and an additive linear-logarithmic regression are construct-

ed. Three construction strategies are formulated for each of them, and the issues of interpreting 

their estimates are considered in detail. The construction strategies based on the least absolute 

deviations method are formalized as linear and partially Boolean linear programming problems. 

The mathematical apparatus developed in this paper is illustrated by modeling rail freight traffic 

in Irkutsk oblast.  
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INTRODUCTION  

Regression analysis is a worldwide recognized 

tool for mathematical modeling based on statistics [1, 

2]. One of the first (and, perhaps, most important) 

stages in constructing a regression model is specifica-

tion, i.e., choosing an appropriate composition of the 

variables and a mathematical relationship among 

them. A significant number of such specifications 

have been developed to date, and most of them can be 

found in [3–6]. The simplest specification is the mul-

tiple linear regression model: 
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     ,  1,i n ,              (1) 

where iy , 1,i n  , are the observed values of the in-

dependent (output) variable y ; ijx , 1,i n , 1,j l , 

are the observed values of the explanatory (input) var-

iables 1x , 2x , …, lx ; ε i , 1,i n  , are approximation 

errors; 0α , 1α , 2α , …, αl  are unknown parameters.  

The linear regression (1) is easily estimated, e.g., 

using the least squares method (LSM). Let the esti-

mated equation have the form 
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   ,                         (2) 

where y  is the model value of the independent varia-

ble; 0 1 2, , ,..., l     are the estimates of the un-

known parameters. 

The coefficient αs  at the explanatory variable sx  

in equation (2) is interpreted in the following way: if 

the value of the explanatory variable sx  varies by 1, 

then the value of the independent variable y  varies 

by αs  on average.  

Note that the development of new specifications 

for regression models continues to the present time. 

For example, a linear multiplicative regression (LMR) 

and a regression contrary to the Leontief production 

function were proposed in [7] and [8], respectively. 

Later on, they were combined in [9]. Another specifi-

cation is an index regression introduced in [10].  

For solving the specification problem, a technolo-

gy to organize a “competition” of regression models 

was developed; for details, see the monograph [6]. 

The competition is intended to form a set of alterna-

tive regressions and select the best one among them. 
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The following algorithm for forming alternatives was 

considered in [6]. First, the set of original explanatory 

variables is enlarged using some transformations, e.g., 

the elementary functions ln x , xe , 1x , 2x , 3x , x , 

etc. Then, by a complete enumeration of all combina-

tions, m  features are selected [11]. Unfortunately, the 

resulting regression equation often turns out to be sig-

nificantly nonlinear, making it difficult (or even im-

possible) to interpret the estimates found. 

This paper develops nonlinear regression specifi-

cations in which any estimated parameter, except the 

free term, can always be given some practical inter-

pretation during the competition of regression models.  

1. MULTIPLICATIVE POWER-EXPONENTIAL REGRESSION 

The exponential regression with one explanatory 

variable [12, 13] has the form 

1

0
ix

i iy e


   , 1,i n .                     (3) 

The model (3) is nonlinear in the estimated pa-

rameters but can be linearized by taking the loga-

rithm: 

0 1ln αi i iy c x u   ,  1,i n ,                (4) 

where 0 0lnαc   and lnεi iu  .  

The linear model (4) is called the semi-log (left-

log, or log-linear) regression [13].  

The book [13] suggested the following interpreta-

tion of the estimated coefficient 1α  of the models (3) 

and (4): if the explanatory variable x  changes by 1, 

then the independent variable y  changes by 1100α % 

on average. 

Unfortunately, as noted in [13], this interpretation 

of the coefficient 1α  of the models (3) and (4) applies 

to small 1α  only.  

Consider a generalization of the model (3): the ad-

ditive multiple exponential regression 
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where β j , 1,j l , are unknown parameters. 

It seems impossible to linearize the model (5). 

Even if its estimates were found, it would be difficult 

to give them any practical interpretation. Therefore, 

consider the multiplicative multiple exponential re-

gression 
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The model (6) is linearized by taking the loga-

rithm, and all its coefficients have the interpretation 

described above. 

The regression (6) resembles by properties the 

Cobb–Douglas production function (the power regres-

sion) 
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   , 1,i n .                  (7) 

The model (7) is also linearized by taking the log-

arithm, and the estimated coefficient αs  at the ex-

planatory variable sx  is interpreted in the following 

way: if the explanatory variable sx changes by 1%, 

then the independent variable y  changes by αs % on 

average. In other words, αs  gives the elasticity of the 

variable y  in sx . 

We construct a multiplicative combination of the 

models (6) and (7):  
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The expression (8) will be called the multiplicative 

power-exponential regression (MPER). 

Note that the power and exponential regressions 

were also combined previously. For example, a modi-

fication of the Cobb–Douglas production function was 

considered in the paper [14]: labor and capital were 

included as power functions and scientific and tech-

nical information as an exponential function. In addi-

tion, we mention Tinbergen’s production function [6], 

representing the product of the power regression (7) 

and a factor γte  describing the “neutral” technical 

progress effect. However, the MPER generalizes all 

these known modifications. 

The logarithmized MPER (8) has the form 

0

1 1

ln ln
l l

i j ij j ij i

j j

y c x x u
 

       , 1,i n .   (9) 

Clearly, the MPER is easily estimated. However, a 

problem arises with a practical interpretation of its 

coefficients: each explanatory variable enters into the 

model (9) both linearly and logarithmically. There-

fore, for interpreting any coefficient of the MPER, we 

should perform feature selection in modeling. 

For the further presentation, we introduce the fol-

lowing Boolean variables:  

pow

1 if  enters into the MPER

σ via the power function,

0 otherwise,

j

j

x


 



 

exp
1 if  enters into the MPER exponentially,

σ
0 otherwise.

j

j

x
 


 

Then linear constraints can be imposed on the co-

efficients of the models (8) and (9):  
pow pow

j j jM M      ,  1,j l ,            (10) 
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exp exp

j j jM M      , 1,j l ,             (11) 

where M  is a large positive number. 

If 
powσ 1j   and 

expσ 0j  , 1,j l , then the MPER 

(8) is transformed to the power regression (7); if 
expσ 0j   and 

expσ 1j  , 1,j l ,  to the exponential 

regression (6).  

We formulate three strategies to construct the 

MPER:  

 Strategy 1. There are no restrictions on how the 

variables enter into the model. In this case, we need to 

estimate the linear regression (9) with  2 1l   param-

eters and pass to the MPER (8). The estimated equa-

tion can be used for prediction, but the coefficients 

cannot be interpreted.  

 Strategy 2. Each explanatory variable enters into 

the model either via the power function or exponen-

tially. This strategy is formally described by 
pow exp 1j j    ,  1,j l .                 (12) 

In this case, we need to estimate 2l
 linear regres-

sions (9) with  1l   parameters, select the best one, 

and pass to the MPER (8). In the resulting equation, 

any coefficient (possibly except the free term) can 

always be given a practical interpretation if its sign 

corresponds to the problem’s sense. Also, the result-

ing equation can be used for prediction. But if the 

number of variables l  is large, then the problem arises 

with selecting a given number of the most informative 

ones. 

 Strategy 3. Each explanatory variable enters into 

the model either via the power function or exponen-

tially, and the total number of linear features is m. 

This strategy is formally described by 
pow exp 1j j    , 1,j l ,                  (13) 

 pow exp

1

l

j j

j

m


   .                    (14) 

In this case, we need to estimate 2m m

lC   linear 

regressions of the form (9) with  1m   parameters, 

select the best one, and pass to the MPER (8). The 

resulting equation can be used for prediction and in-

terpretation as well. 

2. LINEAR-LOGARITHMIC REGRESSION 

The logarithmic [12] (right-log, log-linear) regres-

sion with one explanatory variable has the form 

0 1 lni i iy x   ,  1,i n .             (15) 

According to [15], the estimated coefficient 1α  of 

the model (15) is interpreted in the following way: if 

the explanatory variable x  changes by 1%, then the 

independent variable y  changes by 1α /100  on aver-

age.  

As we believe, the estimate 1α  of the logarithmic 

model (15) can be also given another interpretation: if 

the explanatory variable x  changes by e  times, then 

the independent variable y  changes by 1α  on aver-

age. 

Consider a generalization of the model (15): the 

additive multiple logarithmic regression 
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

     , 1,i n .           (16) 

The model (16) is linear in the parameters, and 

any estimated coefficient at the logarithm of an ex-

planatory variable can be interpreted as mentioned 

above. 

Note that there is no sense to use logarithms with 

different bases in (16). For example, consider the 

model with two explanatory variables 

0 1 2 1 2 3 2log logi iy x x    ,  1,i n . 

With the well-known logarithmic relation 

log
log

log

c
a

c

x
x

a
 , this model is written as 

1 2
0 1 2

ln ln

ln 2 ln3
i i

x x
y       , 1,i n . 

Redenoting  1
1

α
α

ln 2
  and 2

2

α
α

ln3
 , we obtain a 

particular case of the regression (16).  

Now we construct an additive combination of the 

models (1) and (16):  

0
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ln
l l

i j ij j ij i

j j

y x x
 

         , 1,i n ,   (17) 

The expression (17) will be called the linear-

logarithmic regression (LLR). 

Trying to interpret the LLR, we face the same 

problem as for the MPER: each explanatory variable 

enters into equation (17) both linearly and logarithmi-

cally. 

Let us introduce the following Boolean variables: 

lin
1 if  enters into the LLR linearly,

σ
0 otherwise,

j

j

x
 


 

log
1 if  enters into the LLR logarithmically,

σ
0 otherwise.

j

j

x
 


 

Then linear constraints can be imposed on the co-

efficients of the model (17): 

lin lin

j j jM M      , 1,j l ,              (18) 

log log

j j jM M      ,  1,j l .             (19) 
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If 
linσ 1j   and 

logσ 0j  , 1,j l , then the LLR (17) 

is transformed to the linear regression (1); if 
linσ 0j   

and 
logσ 1j  , 1,j l , to the logarithmic regression 

(16). 

By analogy with the MPER, we formulate three 

strategies to construct the LLR:  

 Strategy 1. There are no restrictions on how the 

variables enter into the model. In this case, we need to 

estimate the linear regression (17) with  2 1l   pa-

rameters. The estimated equation can be used for pre-

diction, but the coefficients cannot be interpreted.  

 Strategy 2. Each explanatory variable enters into 

the model either linearly or logarithmically. This 

strategy is formally described by 

lin log 1j j    , 1,j l .                  (20) 

In this case, we need to estimate 2l
 linear regres-

sions of the form (17) with  1l   parameters and 

select the best one. It can be used for prediction and 

interpretation. 

 Strategy 3. Each explanatory variable enters into 

the model either linearly or logarithmically, and the 

total number of features is m. This strategy is formally 

described by 
lin log 1j j    ,  1,j l ,                  (21) 

 lin log

1

l

j j

j

m


   .                     (22) 

In this case, we need to estimate 2m m

lC   linear 

regressions of the form (17) with  1m   parameters 

and select the best one. 

3. CONSTRUCTION OF MPER AND LLR  

USING PARTIALLY BOOLEAN LINEAR PROGRAMMING 

Mathematical programming is widely used in re-

gression analysis; for example, see [16–18].  

Let the logarithmized MPER (9) be estimated us-

ing the least absolute deviations (LAD) method. As 

shown in the monograph [6], the LAD estimates of 

this regression can be obtained by solving the linear 

programming (LP) problem 

mini i

    ,                        (23) 
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, 0i i

    ,                             (25) 

where lni iv y , lnij ijz x , 
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 

   

Then one of the following problems should be 

solved depending on the strategy to construct the 

MPER: 

 for strategy 1, the LP problem with the objective 

function (23) and the linear constraints (24) and (25); 

 for strategy 2, the partially Boolean linear pro-

gramming (PBLP) problem with the objective func-

tion (23) and the linear constraints (24), (25), and 

(10)–(12); 

 for strategy 3, the PBLP problem with the objec-

tive function (23) and the linear constraints (24), (25), 

(10), (11), (13), and (14). 

The problem of constructing the LLR is formal-

ized by analogy. The LAD estimates of the LLR (17) 

are found by solving the LP problem 

mini i

     ,                       (26) 

0

1 1

l l

i j ij j ij i i

j j

y x z  

 

          , 1,i n ,  (27) 

, 0i i

    ,                           (28) 

where lnij ijz x , 
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Then one of the following problems should be 

solved depending on the strategy to construct the 

LLR: 

 for strategy 1, the LP problem with the objective 

function (26) and the linear constraints (27) and (28); 

 for strategy 2, the PBLP problem with the objec-

tive function (26) and the linear constraints (27), (28), 

and (18)–(20); 

 for strategy 3, the PBLP problem with the objec-

tive function (26) and the linear constraints (27), (28), 

(18), (19), (21), and (22). 

 

4. MODELING RAIL FREIGHT TRAFFIC  

IN IRKUTSK OBLAST 

Nowadays, a topical problem is to model rail 

freight traffic; for example, see [19, 20]. To demon-

strate the mathematical apparatus proposed above, we 

considered this problem for Irkutsk oblast. Models 

were constructed based on the annual data of the Fed-

eral State Statistics Service for 2000–2018, available 

at the official website, with the following indicators: 

– freight forward by public railway transport, y  

(million tons); 

– labor force, 3x  (thousand people); 

– gross regional product, 14x  (million rubles); 

– the number of enterprises and organizations, 18x ; 

– industrial output (million rubles); 

– electricity production, 22x  (billion kWh); 

– the average annual nominal wage in the mining 

industry, 23x  (rubles); 

– the average annual nominal wage in the manu-

facturing industry, 24x  (rubles); 

– agricultural output, 25x  (million rubles); 

– the average annual nominal wage in agriculture, 

hunting, and forestry (rubles); 

– the number of active construction organizations; 

– retail trade turnover, 31x  (million rubles). 

A special script was written in the hansl language 

of Gretl (an open-source statistical package 

for econometrics) to construct the MPER and LLR. 

First, the MPER was constructed based on the ini-

tial data using strategy 3. The problem was solved by 

enumeration, and the estimates were obtained by the 

least squares method with m = 3 features. The com-

plete enumeration of 3 3

11 2 1320C    alternatives 

yielded the best one in terms of the coefficient of de-

termination 
2R . The resulting regression has the 

prologarithmic form 

6

23
(2.972)

5

25 31
( 6.098) (11.13)

ln 1.2502 8.431 10

3.388 10 0.5176ln

y x

x x







    

  
,           (29) 

and the coefficient of determination is 2 0.9334R  . 

In equation (29), the values of the Student’s t-test are 

indicated under the coefficients of the explanatory 

variables. According to these values, all coefficients 

are significant for the significance level α 0.05 . 

Unfortunately, due to the multicollinearity effect, 

the coefficient at the variable 25x  changed its sign. 

Therefore, an attempt to interpret equation (29) leads 

to an absurd conclusion: we should reduce agricultur-

al output for increasing rail freight traffic. Hence, 

when enumerating the models, we should check 

whether the signs of the regression equation coeffi-

cients agree with the practical interpretation of the 

variables. If at least one coefficient does not agree 

with its interpretation, then such a model is eliminated 

from further consideration. This recommendation can 

be found in the monograph [6]. Therefore, the MPER 

was rebuilt: an expert group determined that all ex-

planatory variables should affect y  with the “+” sign. 

The script was modified and launched with the same 

settings. As it turned out, among the 1320 alterna-

tives, only 64 ones match the practical interpretation. 

The best of them is the logarithmic form model 

3
(2.812)

18 22
(3.555) (3.447)

ln 6.4889 0.00127

0.533ln 0.754ln

y x

x x

   

 
,             (30) 

where all coefficients of the explanatory variables are 

significant and 2 0.7437R  .  

The MPER corresponding to equation (30) is  
30.00127 0.533 0.754

18 220.00152
x

y e x x    .         (31) 

The sum of the squared residuals for the model 

(31) is 229.598. 

The model (31) is interpreted in the following 

way: with an increase in the labor force 3x  by 1 thou-

sand people, the freight forward y  raises by 0.127% 

on average; with an increase in the number of enter-

prises and organizations 18x  by 1%, the freight for-

ward y  raises by 0.533% on average; with an in-

crease in the electricity production 22x  by 1%, the 

freight forward y  raises by 0.754% on average. 

Then, the LLR was constructed based on the initial 

data using strategy 3. The script settings were the 

same as for the MPER. The enumeration of the 1320 

alternatives yielded the model  

24
(2.55)

25 14
( 6.185) (12.87)

267.173 0.000639

0.00193 29.124ln ,

y x

x x


   

 
             (32) 
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where all coefficients at the features are significant 

and 2 0.9328R  . 

In the model (32), the coefficient at the variable 

25x  again does not match the practical interpretation 

of the problem. Therefore, this model was rebuilt by 

checking the signs of the coefficients. As it turned 

out, among the 1320 alternatives, only 64 ones match 

the practical interpretation. The best of them is the 

regression 

3
(2.764)

18 22
(3.489) (3.282)

552.38 0.0746

31.1352ln 42.7013ln ,

y x

x x

   

 
           (33) 

where all coefficients of the explanatory variables are 

significant, 2 0.7312R  , and the sum of the squared 

residuals is 233.236.  

Clearly, in terms of the sum of the squared residu-

als, the LLR (33) is somewhat worse than the MPER 

(31). Note that the LLR (33) includes the same fea-

tures as the MPER (31). 

The model (33) is interpreted in the following 

way: with an increase in the labor force 3x  by 1 thou-

sand people, the freight forward y  raises by 0.0746 

million tons on average; with an increase in the num-

ber of enterprises and organizations 18x  by 1%, the 

freight forward y  raises by 0.3113 million tons on 

average; with an increase in the electricity production 

22x  by 1%, the freight forward y  raises by 0.427 mil-

lion tons on average. In addition: if the number of en-

terprises and organizations 18x  increases by e  times, 

the freight forward y  will grow by 31.1352 million 

tons on average; if the electricity production 22x  in-

creases by e  times, the freight forward y  will grow 

by 42.7013 million tons on average. 

Thus, if the researcher needs to predict the freight 

forward y , he should apply the models (29) and (32). 

If the researcher is also interested in interpreting the 

effect of different features on y , he should choose the 

MPER (31) and LLR (33), approximately of the same 

quality but with different meanings. 

 

 

CONCLUSIONS  

This paper has introduced two new specifications 

for regression models: the multiplicative power-

exponential regression (MPER) and the linear loga-

rithmic regression (LLR). The issues of their estima-

tion and practical interpretation have been considered. 

The main advantage of these specifications is that 

each regression coefficient, except the free term, can 

always be given some practical interpretation. The 

MPER and LLR specifications allow identifying and 

studying new nonlinear regularities of processes or 

objects. Generally speaking, these specifications in-

crease the usefulness of regression analysis.  
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