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Аннотация. Задача оценки фундаментальной частоты ряда гармоник встречается во 
многих областях науки и техники. Так, в задачах вибрационной диагностики требуется, 

например, оценить износ подшипников, что определяется по смещению основания ряда 

гармоник. При обработке аудиосигналов задача оценки основной частоты связана с 

автоматической настройкой инструментов. В задаче синтеза речи фундаментальная частота 

определяет высоту звука. При распознавании речи частота основного тона является 

важным информационным признаком. В радиотехнике эта задача решается в целях 

восстановления сигнала, фильтрации и декодирования. В биомедицинской инженерии при 

анализе ЭКГ, ЭЭГ, голоса, дыхания по основной частоте диагностируются патологии, 

например, аритмии. В задачах обнаружения и классификации морских судов важнейшим 

информационным критерием является основание вально-лопастного ряда. В данной работе 

предлагаются новые подходы для оценки фундаментальной частоты в условиях сильного 

шума. В целях снижения ошибок предлагается применять метод периодограмм, 

фильтрацию, автокорреляцию, преобразование Гильберта. Стоит также отметить, что 

качество оценки основной частоты ряда гармоник в условиях повышенного шума 

значительно возрастает при подборе оптимальных параметров: размера временно го окна, 

параметров фильтрации, интервала спектра для автокорреляции, количества автокорреля-

ций.  
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фундаментальная частота.  
 

 

 

Конкретизация задачи в вопросе поиска 

фундаментальной частоты связана с различиями в 

типах сигналов и шумов, методах предобработки 

сигнально-шумовой смеси. Далее в работе  рас-

сматривается  задача поиска основания вально-ло-

пастного ряда (ОВЛР) создавамого винтом мор-

ского судна, хотя предлагаемые методы примени-

мы и в других инженерных дисциплинах. Одним 

из главных источников первичного гидроакусти-

ческого поля морских судов являются гребные 

винты. Они формируют вибрации на двух ключе- 
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вых дискретных частотах: на частоте вращения ва-

ла (вальная частота) и на частоте, равной произве-

дению вальной частоты на число лопастей винта 

(лопастная частота) [1, 2]. У современных судов 

вальные частоты обычно находятся в диапазоне 

1–6 Гц, а лопастные – в пределах 6–24 Гц [3]. 

Из-за нелинейных эффектов, возникающих при 

излучении акустических волн, в низкочастотном 

спектре судового шума образуется совокупность 

гармоник с кратными частотами. Эти гармоники, 

амплитуда которых значительно превышает уро-

вень окружающего шума, называются дискрет-

ными составляющими. Группу таких дискретных 

составляющих, расположенных на кратных часто-

тах, называют звукорядом. Если источник этих 

гармоник – гребной винт, звукоряд называется 

вально-лопастным. 
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В вально-лопастном звукоряде можно выделить 

два типа дискретных составляющих: вального и 

лопастного звукорядов. Первая дискретная 

составляющая вального звукоряда соответствует 

частоте вращения вала, которая напрямую связана 

со скоростью движения судна [2, 4]. Основная 

частота лопастного звукоряда определяется 

произведением вальной частоты на число лопастей 

винта. Таким образом, по анализу вально-

лопастного звукоряда можно получить ценную 

информацию о конструкции судна, включая 

количество лопастей гребного винта, что активно 

используется в системах распознавания морских 

целей, основанных на анализе спектра сигнала [5]. 

Современные гидроакустические системы 

позволяют проводить анализ таких сигналов с 

высокой точностью. Однако, несмотря на развитые 

алгоритмы обработки данных, окончательное 

решение в большинстве случаев принимает 

оператор [6]. Определение количества лопастей 

винта осуществляется на основе представленных 

оператору параметров спектра вально-лопастного 

звукоряда. 

Среди методов обработки сигналов выделяют 

вейвлет-анализ, который позволяет обнаруживать 

гидроакустические сигналы в виде звукоряда и 

измерять основную частоту вального звукоряда 

[4]. Другим подходом является спектральный ана-

лиз с последовательным выделением отдельных 

дискретных составляющих и формированием зву-

корядов [3]. 

Для удобства оператора результаты узкополос-

ного частотного анализа обычно представляют в 

двух формах: график спектра сигнала, отображаю-

щий расположение гармоник; таблица параметров 

обнаруженных дискретных составляющих и их 

характеристик. При анализе графика спектра опе-

ратор визуально идентифицирует гармоники, что-

бы выделить среди них основные вальную и ло-

пастную частоты. Вальная частота, как правило, 

является первой по порядку дискретной состав-

ляющей, а лопастная – одной из последующих с 

максимальной амплитудой. Кроме того, таблица 

параметров дискретных составляющих предостав-

ляет оператору числовые значения частот, что по-

вышает точность идентификации и снижает веро-

ятность ошибки. 

Современные исследования направлены на раз-

работку автоматизированных алгоритмов, способ-

ных снизить зависимость анализа от человеческого 

фактора. Наиболее традиционным инструментом 

для анализа акустического шума является преобра-

зование Фурье (англ. Fast Fourier Transform, FFT), 

которое позволяет выделять основные гармониче-

ские составляющие сигнала. Однако FFT имеет 

ограниченную разрешающую способность, особен-

но при низком уровне сигнала и высоком уровне 

шума. Для преодоления этих ограничений приме-

няются методы периодограммы и автокорреляци-

онного анализа. Например, метод Уэлча умень-

шает разброс оценок спектральной плотности 

мощности [7], а методы сверхвысокого разрешения 

MDVR (англ. Minimum Variance Distortionless 

Response), MUSIC (англ. MUltiple SIgnal 

Classification), ESPRIT (англ. Estimation of Signal 

Parameters via Rotational Invariant Techniques) 

обеспечивают повышенную разрешающую способ-

ность [8]. 

Автокорреляция эффективна при анализе сла-

бых сигналов и позволяет выделять закономерно-

сти даже при сильном шуме. Также активно 

используется анализ огибающей спектра, который 

применяется для выделения характеристик лопаст-

ного шума. В работе [9] предложена методика 

адаптивного спектрального анализа огибающей, 

позволяющая учитывать влияние флуктуаций в 

спектре. 

В настоящей работе предлагаются несколько 

подходов при исследовании смеси гармонического 

звукоряда и шума, которые в комплексе позволяют 

производить оценку основания гармонического 

ряда даже при малом отношении сигнал/шум по 

одному временно му окну. В качестве основы 

предлагается использовать логарифм энергетиче-

ского спектра исследуемого сигнала. Далее произ-

водится оценка огибающей логарифма энергетиче-

ского спектра итерационным усреднением по трем 

точкам. Как показано в статье, такой метод весьма 

близок к свертке спектра с функцией Гаусса, но 

при этом стоит сказать, что усреднение по трем 

точкам позволяет в конечном итоге производить 

оценку основания гармонического ряда с меньши-

ми ошибками. Далее анализируется псевдоспектр, 

который представляет собой разницу логарифма 

энергетического спектра и его огибающей. 

Метод последовательных автокорреляций не 

всегда дает возможность верно оценить основание 

гармонического ряда. На результат влияют и плот-

ность спектральных линий, и значение основания 

звукоряда, а также уровень шума. С целью повы-

шения чувствительности метода предлагается до 

применения автокорреляции слегка «размыть» 

дискреты гармоник, с этой целью псевдоспектр 

чуть сглаживается. 

После нескольких последовательных автокор-

реляций при помощи преобразования Гильберта 

вычисляется так называемая кепстральная фаза 

или сафе (см. пояснение в § 1). Дело в том, что 
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после последовательных автокорреляций псевдо-

спектра результат напоминает убывающую 

гармонику во временно й области, но при этом 

полученный ряд значений относится к частотной 

области. Поэтому, применяя преобразование 

Гильберта к автокорреляции псевдоспектра, на 

деле получают оценку кепстральной фазы, которая 

при делении на частоту, к которой относится эта 

фаза, дает оценку основания звукоряда. 

С развитием методов искусственного интел-

лекта стали популярны нейросетевые модели, 

способные классифицировать суда по их акустиче-

ским сигналам. В исследованиях [10, 11] рассмот-

рены сверточные нейронные сети (англ. 

Convolutional Neural Network, CNN), обученные на 

спектрограммах шумов. Подходы на основе 

машинного обучения позволяют повысить точ-

ность определения значений параметров винта, 

однако требуют больших объемов данных для 

обучения. Несмотря на прогресс в области автома-

тизации, участие оператора остается важным эле-

ментом анализа, особенно в сложных акустических 

условиях, где возможны помехи и ложные сраба-

тывания. 

Метод DEMON (англ. Demodulation of Envelope 

Modulation On Noise) специально разработан для 

обнаружения модуляций, возникающих от 

огибающей кавитации гребного винта. При 

помощи DEMON можно выделить кавитационный 

шум из общего спектра сигнала и определить 

количество валов, частоту вращения вала, 

количество лопастей винта. В биоакустике при

помощи данного метода осуществляется анализ 

сигналов китов, дельфинов, других животных. 

Ограничение данного метода заключается в 

необходимости выбора шумовой полосы, что 

требует хороших навыков работы оператора-

гидроакустика. Кроме того, низкая помехоустой-

чивость является еще одним недостатком этого 

метода. Предлагаемый в настоящей работе алго-

ритм, в составе которого используются сглажива-

ние логарифма спектра мощности по трем точкам, 

предварительная фильтрация псевдоспектра, не-

сколько последовательных автокорреляций и пре-

образование Гильберта, позволяет значительно 

увеличить помехоустойчивость при оценке ОВЛР. 

 

Сформулируем основную задачу настоящей 

работы. Пусть =1{ }N

k kx  – дискретный ряд аудиоза-

писи шума морского судна во временном окне 

размера T , количество отсчетов в одном окне N , 

[1, ]k N , = sN T f , где T  – длина окна в секун-

дах; sf  – частота дискретизации. Необходимо 

построить алгоритм оценки ОВЛР 
0f  по одному 

временному окну, а также определить оптималь-

ные параметры этого алгоритма.  

Далее представлено последовательное описа-

ние структурных элементов алгоритма оценки 

ОВЛР (рис. 1). 

 
 

 
 

 
Рис. 1. Структура алгоритма определения ОВЛР 
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Построение периодограммы 

Периодограмма вычисляется с помощью 

дискретного преобразования Фурье (англ. Discrete 

Fourier Transform, DFT) для сигнала kx  длины N : 

21

=0

= ,
N i jk

N
j k

k

X x e
 

  

где jX  – комплексное значение спектра на j-й 

частоте ( = 0, 1, , / 2j N ), соответственно, значе-

ние частоты в Гц вычисляется так: = s
j

f
f j

N
. 

Далее в работе алгоритма используется только 

диапазон частот min maxjf f f  . Ограничение по 

частотам связано с тем, что на частотах выше 
maxf  

отсутствуют составляющие гармонического ряда, а 

на частотах ниже 
minf  присутствует сильный шум, 

следовательно, maxmin < <
s s

ff
N j N

f f
. 

Логарифмирование периодограммы 

При логарифмировании энергетического 

спектра сигнала исчезают резкие скачки, которые 

связаны с гармониками вально-лопастного ряда, 

что, в свою очередь, позволяет выделить огиба-

ющую при сглаживании: 

(0) 2= ln | | .j jS X  

Итеративное сглаживание спектра 

Построение огибающей спектра достигается 

методом усреднения по трем точкам в M  итера-

циях: 

( 1) ( 1) ( 1)
1 1( ) = ,

3

m m m
j j jm

j

S S S
S

  
  

               (1) 

где j  – индекс элемента спектрального ряда 

maxmin < <
s s

ff
N j N

f f

 
 
 

; m  – номер итерации 

( [1, ])m M ; M  – количество итераций. 

Далее требуется уточнить, что границы спектра 

вносят некоторые коррективы в выражение (1): 

( 1)

( )
( 1) ( 1) ( 1)

1 1

(для граничных точек),

3

(для внутренних точек).

m

j

m
m m m

j
j j j

S

S S S S



  

 






   




         (2) 

Определение 1. Итеративный алгоритм 

сглаживания ряда, заданный выражением (2), 

будем называть сглаживанием по трем точкам 

порядка .M  ♦ 

Коррективы в итоговом алгоритме сглаживания 

по трем точкам (2), учитывающие влияние 

граничных точек, не оказывают значительного 

влияния на результат сглаживания спектра при 

M N , поэтому далее в целях упрощения 

доказательств в математических выкладках ис-

пользуется выражение (1). 

Заметим, что M  итераций в выражении (1) 

практически равносильны взвешиванию элементов 

исходного ряда по функции Гаусса со 

стандартным отклонением 
2

3

M
  

0,820467 .M  Примеры для = 5M  и = 50M  

приведены на рис. 2 (см. пример для М = 1,…,4 в 

таблице). 

 

Весовые коэффициенты алгоритма сглаживания по трем точкам в зависимости от номера итерации  
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Рис. 2. Сравнение соответствующих весов элементов массива, 

полученных согласно формуле (1) при М = 5 и M = 50 и функции 

Гаусса ( σ = 2 / 3М ). По оси абсцисс указаны отклонения 

индекса элемента исходного ряда от индекса j при оценке 

весового коэффициента  

 
Сформулируем следующую лемму. 

Лемма 1 (вычисление весовых коэффициен-

тов). M  последовательных итераций (1) 

порождают весовые коэффициенты, прибли-

женные оценки которых могут быть получены с 

помощью функции Гаусса с параметром 

2
=

3

M
  ( 1M ): 

(0) 2
( )

=

= exp .
4 / 34 / 3

M
j kM

j

k M

S k
S

MM





  
  

   
        (3) 

Д о к а з а т е л ь с т в о. Доказательство того, что 

весовые коэффициенты, полученные посредством 

последовательных итераций, могут быть оценены 

функцией Гаусса, носит технический характер. 

Покажем, что при M  итерациях веса при усреднении 

по трем точкам (1) аппроксимируются функцией Гаусса 

с параметром 
2

=
3

M
 . 

Пусть M  достаточно большое. Рассмотрим 

итерацию 1M  , тогда при условии аппроксимации 

весов в алгоритме усреднения по трем точкам на шаге 

M  функцией Гаусса с параметром 2 =M M   имеем 

следующее при j M : 

2 2 2( 1) ( ) ( 1)

2 2 22 2 2

2 2 2

2 2 2

2

22 2
2

2

1

3 2

1 ( 1) ( ) ( 1)
1 1 1 =

2 2 23 2

1 1 2 1 1
= 1 .

1322 2
1

3

j j j

j

e e e

j j j

j e

 
  

  




 
   
  
 

  
      

     

  
    

         
 

 

Коэффициент при экспоненте на шаге 1M   должен 

соответственно определяться новым параметром 
2

1 = ( 1)M M   , поэтому 

2

2

1

1 2
= ( 1) = 1 .

3 3
M M M M M

M


 
           

 
 

Откуда следует, что 
2

=
3

  и, соответственно,

2
=

3

M
 . ♦  

Сформулируем следующие леммы. 

Лемма 2 (cглаживание спектра при помощи 

свертки). Приближенная оценка результата 

сглаживания при помощи M  последовательных 

итераций (1), примененных к логарифму 

энергетического спектра сигнала во временном 

окне T ,  может быть получена посредством 

свертки логарифма энергетического спектра 

сигнала и функции Гаусса с параметром 

1 2
=

3

M

T
  ( 1M ): 

(0) 2
( )

2
=

= exp .
22

M
j kM

j

k M

S k
S





  
  

   
             (4) 

Альтернативная запись выглядит следующим 

образом: 

( ) (0)( ) = ( ) ( , ).MS f S f N f                  (5) 

Д о к а з а т е л ь с т в о. При увеличении размера 

временного окна T  плотность спектральных линий 

возрастает, а стандартное отклонение – параметр 

функции Гаусса, по которой согласно лемме 1 (см. 

формулу (3)) осуществляется оценка весовых коэффи-

циентов, уменьшается пропорционально размеру окна 

.T  Соблюдая условие нормировки функции Гаусса, 

получаем искомое выражение (4). ♦ 

Лемма 3 (сглаживание спектра при помощи 

кепстра и функции Гаусса). Приближенная 

оценка результата сглаживания при помощи M  

последовательных итераций (1), примененных к 

логарифму энергетического спектра сигнала во 

временном окне T , может быть получена 

посредством преобразования Фурье произведения 

кепстра этого сигнала 
1 (0)( ) = ( )K F S f      на 

функцию Гаусса с параметром 
* 3

=
2

T
M



( 1) :M  

( ) *= ( ) ( , ) .MS F K N       

Д о к а з а т е л ь с т в о. Действительно, так как 

выражение (5) представляет из себя свертку логарифма 
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энергетического спектра сигнала и функции Гаусса, то 

согласно известной формуле о преобразовании Фурье 

произведения двух функций (      =F f g F f F g  ) 

имеем, что представленное выражение есть не что иное 

как преобразование Фурье от произведения обратного 

преобразования Фурье логарифма энергетического 

спектра (что есть кепстр) и обратного преобразования 

Фурье от функции Гаусса в частотной области с 

параметром 
1 2

=
3

M

T
  (что также является функцией 

Гаусса, но во временной области с параметром 

* 3
=

2
T

M
 ), см. пример на рис. 3, а. ♦  

Лемма 4 (выделение линейчатого спектра). 
Приближенная оценка линейчатого спектра 

сигнала 
(0) ( )ˆ( ) = ( ) ( )MS f S f S f  (ранее эта 

разность была определена как псевдоспектр) 

может быть получена следующими способами: 

– посредством вычисления свертки логарифма 

энергетического спектра сигнала с разностью 

дельта-функции ( )f и функции Гаусса: 

 (0)ˆ( ) = ( ) ( ) ( , ) ,S f S f f N f     

где ( ) ( , )f N f    , 
  , причем 

  

определяет точность линейчатого спектра, а   

определяет степень сглаженности огибающей 

спектра. 

– посредством преобразования Фурье 

произведения кепстра исходного сигнала и 

разности константы и функции Гаусса: 

 *ˆ( ) = ( ) ( , ) ,S f F K N      
 

 

где кепстр 
1 (0)( ) = ( )K F S f     ,  1= ( )F f   

( ( ) ( , ))f N f    . 

Д о к а з а т е л ь с т в о. Результат, сформулирован-

ный в лемме 4, является следствием леммы 2 и леммы 3, 

а также следствием аддитивности преобразования 

Фурье и формулы преобразования Фурье для дельта-

функции: 

(0) ( )

(0) (0)

(0)

ˆ( ) = ( ) ( ) =

( ) ( ) ( , ) =

( ) ( ( ) ( , )).

MS f S f S f

S f S f N f

S f f N f



   

    

 

В свою очередь, применяя формулу для 

преобразования Фурье произведения двух функций, 

получаем:  

 

(0)

1 (0) 1

*

ˆ( ) = ( ) ( ( ) ( , )) =

[ ( )] [( ( ) ( , ))] =

= ( ) ( , ) .

S f S f f N f

F F S f F f N f

F K N

 

   

      

      
 

 

При реализации численного расчета в случае 

дискретного преобразования Фурье оценка дельта-

функции может быть получена из функции Гаусса с 

малым параметром 
  , с соответствующим 

условием нормировки (сумма всех весов, полученных 

при помощи аппроксимации функцией Гаусса, должна 

быть равна единице), значение  1= ( )F    , см. 

пример на рис. 3, б. ♦  

Стоит напомнить, что при применении 

методов, относящихся к определению кепстров, 

учитываются функции, которые можно рассмат-

ривать как спектры логарифмических спектров. По 

существу, понятие кепстра было введено уже 

в 1963 г. 

 

а 

 

б 
 

 
Рис. 3: а – оценка огибающей спектра (лемма 3), б – центрированный логарифмический спектр мощности (лемма 4). Оценки получены двумя 

методами: итеративное сглаживание спектра и вычитание огибающей (сплошные линии), оценка огибающей и оценка центрированного спектра 

посредством кепстрального метода (пунктирные линии)  
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Кепстр мощности определяют как «спектр 

мощности логарифмического спектра мощности» 

[12]. Кепстр мощности был предложен в качестве 

более эффективной альтернативы автокорреляци-

онной функции при обнаружении эха в сигналах.  

Поскольку соответствующая функция по 

определению отображала спектр спектра, автор 

работы [13] воспользовался терминологической 

аналогией и, согласно термину «спектр», придал 

этой функции название кепстр
1
. 

Однако самая важная особенность кепстра 

заключается не в том, что он представляет спектр 

спектра, а в логарифмическом преобразовании 

исходного и подвергаемого дальнейшей обработке 

спектра. Отметим, что автокорреляционную 

функцию, определяемую на основе собственного 

спектра мощности путем обратного преобразо-

вания Фурье, также можно рассматривать как 

«спектр спектра». По существу, используемое в 

настоящее время определение кепстра определяет 

кепстр мощности как «обратное преобразование 

Фурье логарифмического спектра мощности». Раз-

личие между этим определением и определением 

автокорреляционной функции заключается лишь в 

логарифмическом преобразовании исходного 

спектра. 

Применение кепстров мощности в области 

исследования вально-лопастного ряда основано на 

обеспечиваемой кепстрами возможности обнару-

жения периодичностей спектров, например, серий 

равномерно распределенных гармоник. С точки 

зрения применения в упомянутой области важное 

преимущество кепстров связано с их малой зави-

симостью от путей распространения исследуемых 

сигналов, в том числе путей от источников к 

точкам замера. 

Вычитание тренда и сужение частотного 

диапазона 

Далее в целях выделения линейчатого спектра, 

который содержит важную информацию о вально-

лопастном ряде, предлагается вычитать из 

логарифма спектра мощности сигнала его 

огибающую. Тогда искомый центрированный 

спектральный ряд получается следующим 

образом: 

                                                           
1 Аналогичным образом возникли и термины «квефренция» 

(quefrency), «рагмоника» (rahmonic), «лифтр» (lifter), 

«гамнитуда» (gamnitude) и «сафе» (saphe), основанные на 

аналогии с английскими терминами для частоты (frequency), 

гармоники (harmonic), фильтра (filter), модуля (magnitude) и 

фазы (phase). Относительно часто используются и термины, 

относящиеся к лифтру (лифтрация, пролифтрованный и т. п.) 

и указывающие на процесс фильтрации в кепстральной 

области. 

(0) ( ) (0) ( )ˆ ˆ= ( ) = ( ) ( ) = .M M

j j j j j jS S f S f S f S S   

Затем определяется интервал частот 

min max[ , ]jf f f . Соответственно, для индекса j  

этих частот справедливо следующее: 

min max< <Tf j Tf . 

Последовательные автокорреляции 

Применение нескольких последовательных 

автокорреляций к спектру (точнее к центриро-

ванному логарифму спектральной мощности) – это 

метод, который здесь применяется для дальней-

шего сглаживания, улучшения выделения законо-

мерностей и для более точного извлечения по-

лезной информации из спектра. 

Каждое вычисление автокорреляции усредняет 

информацию, что помогает удалить шумовые ком-

поненты и краткосрочные флуктуации. Выпол-

нение нескольких последовательных автокорре-

ляций усиливает этот эффект. Шумовые ком-

поненты часто имеют короткий период или слу-

чайный характер, а автокорреляция помогает выде-

лить регулярные, повторяющиеся элементы. Если 

спектр сигнала имеет сложную структуру с не-

сколькими периодическими компонентами (в 

спектре присутствует несколько гармонических 

рядов), выполнение нескольких автокорреляций 

позволяет более точно выделить эти компоненты. 

С каждым циклом автокорреляции спектра выде-

ляются более устойчивые гармонические ряды, а 

неустойчивые гармонические ряды и разного рода 

шумы сглаживаются, поэтому несколько последо-

вательных автокорреляций позволяют выделить 

наиболее устойчивую компоненту шума гребного 

винта – ОВЛР. 

При анализе вально-лопастного ряда несколько 

последовательных шагов автокорреляции логариф-

ма спектра мощности позволяют лучше выделить 

низкочастотную составляющую (частоту вала) на 

фоне более высокочастотной составляющей (ло-

пастной частоты). При этом нужно иметь в виду, 

что при применении автокорреляции к спектру 

низкие и высокие частоты как бы меняются 

местами: низкочастотное вращение вала прояв-

ляется частыми пиками, а лопастная частота – 

более редкими пиками, и после каждой следующей 

автокорреляции вальная частота проявляется все 

сильнее. 

Повторная автокорреляция спектра вычисля-

ется уже для сглаженного результата из первой 

автокорреляции спектра, что дает дополнительное 

сглаживание. Поскольку шумовые компоненты в 

первой автокорреляции ослабляются, повторное 

усреднение их во второй автокорреляции приводит 

к еще большему ослаблению как случайных 
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выбросов, так и тех компонент, которые не обра-

зуют гармонических рядов. При этом существует 

ограничение: большое количество автокорреляций 

в конце концов сгладит даже полезную инфор-

мацию об устойчивых, регулярных закономер-

ностях, которые имеют долгосрочную структуру, 

связанную с ОВЛР. 

Определим автокорреляционную функцию 

центрированного логарифмического спектра мощ-

ности ˆ jS  порядка р = 0 следующим образом: 

max
(0) (0)

=
min

ˆ ˆ( ) = = .

Tf k

k k j j k

j Tf

C f C S S



  

Далее, определим 
( )p

kC  как автокорреляцион-

ную функцию центрированного логарифмического 

спектра мощности ˆ jS  порядка p : 

max
( ) ( ) ( 1) ( 1)

=
min

( ) = = ,

Tf k

p p p p

k k j j k

j Tf

C f C C C



 


 

где [1, ]p P , Р + 1 – количество последователь-

ных автокорреляций. 

Преобразование Гильберта 

Современные методы теории аналитического 

сигнала [14] позволяют выделить (демодулиро-

вать) из колебательного процесса его мгновенную 

амплитуду (огибающую), мгновенную фазу и 

мгновенную частоту. Для получения этих 

мгновенных функций необходимо с помощью 

интегрального преобразования Гильберта 

преобразовать исходный процесс ( )x t , заданный 

на некотором интервале, в сопряженный процесс 

ˆ( )x t  [5]: 

1 ( )
ˆ( ) = { ( )} = .

x
x t x t d

t








    

Аналитический сигнал можно записать как 

ˆ( ) = ( ) ( ).ax t x t ix t  

Легко показать, что функция 
0sin t  является 

преобразованием Гильберта функции 0cos t . 

Поэтому аналитический сигнал, соответствующий 

0cos t , имеет вид: 

0 0 0( ) = cos sin = exp( ).ax t t i t i t     

Аналитический сигнал общего вида удобно 

представлять в экспоненциальной форме как 

 ( ) =| ( ) | exp ( ) ,a ax t x t i t  

где 

 

1/2
2 2ˆ| ( ) |= ( ) ( ) ,

ˆ( ) = arctg ( ) / ( ) .

ax t x t x t

t x t x t

  


                  (6) 

Теперь положим 
0( ) = ( )t t t    и запишем: 

  0 0( ) =| ( ) | exp ( ) exp( ) = ( )exp( ).a ax t x t i t i t t i t     

Комплексная огибающая ( )t  получается 

удалением комплексного множителя, связанного с 

несущей, из аналитического сигнала: 

 0( ) = ( )exp( ) =| ( ) | exp ( ) .a at x t i t x t i t     

Если ( )t  – узкополосная относительно 
0 / 2   

функция, то она будет обладать свойствами, кото-

рые интуитивно связываются с понятием огиба-

ющей. 

Физический смысл интегрального преобразова-

ния Гильберта для сигнала, представленного в 

частотной области, заключается в фазовом сдвиге 

всех спектральных составляющих исходного сиг-

нала на / 2 . Двойное преобразование Гильберта 

приводит к исходному процессу, но только с 

обратным знаком, т. е. осуществляет сдвиг исход-

ного сигнала на  . 

Применим преобразование Гильберта к 
( ) ( )P

kC f  для получения аналитической 

автокорреляции: 

( ) ( ) ( )( ) = ( ) { ( )}.P P P

k k kC f C f i C f  

Далее здесь кепстральная фаза определяется 

как аргумент аналитической автокорреляции: 

 ( ) ( ) ( )= arg ( ) = arg ( ) { ( )} ,P P P

k k k kC f C f i C f   

( )

( )

{ ( )}
= arctg .

( )

P

k
k P

k

C f

C f

 
  

 
                  (7) 

Остановимся на этом подробнее и сформули-

руем следующее 

Определение 2. Будем называть кепстральной 

фазой значение, вычисляемое посредством 

выражения (7). ♦ 

Далее частоту, для которой вычисляется 

кепстральная фаза, будем обозначать 
Hf , подчер-

кивая тем самым, что она (сафе) вычисляется 

посредством преобразования Гильберта. 

Лемма 5 (основание гармонического ряда и 

преобразование Гильберта). Пусть задан 

некоторый сигнал ( )x t  с непостоянной 

амплитудой и медленно меняющейся в течение 

всего периода наблюдения T  частотой. Тогда 

средний период колебаний сигнала 0T  за время t  

может быть оценен посредством следующего 

выражения: 
1

0

{ ( )}
= 2 arctg , 0 < <

( )

x t
T t t T

x t



  
   

  
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Доказательство носит технический характер и 

легко может быть получено из выражения (6). 
Следствием этой леммы является следующий 

результат. Представим вместо сигнала ( )x t  (о 

котором идет речь в лемме 5) коррелограмму ( )PC  

логарифмического энергетического спектра 

сигнально-шумовой смеси, содержащей сигнал 

(гармонический ряд с основанием 
0f ) и некоторый 

шум, причем отношение энергии сигнала (гармо-
нического ряда) к энергии шума достаточно высо-

кое. Тогда для оценки основания гармонического 
ряда справедливо следующее выражение: 

1
( )

0 ( )

{ ( )}
= 2 arctg ,

( )

P

H
H P

H

C f
f f

C f



  
   

     

       (8) 

где 
min max< < .Hf f f  

Причем стоит отметить, что частоту 
Hf  сле-

дует выбирать в зависимости от конкретной задачи 
и условий. Так, если требуется, чтобы метод рабо-

тал в условиях сильного шума, то рекомендуется 
выбирать значение этой частоты в диапазоне 

max max0,1 < < 0,2Hf f f (коррелограмма «ломается» 

на правом конце вследствие высокой шумовой 

компоненты). Если же требуется оценивать 
основание вально-лопастного ряда с высокой 

точностью в условиях слабой зашумленности, то 

следует выбирать 
maxHf f . Нетрудно показать, 

что оценка ОВЛР посредством выражения (8) 
представляет усреднение частотных разностей 

пиков автокорреляции, а это, в свою очередь, 

определяет точность оценки 
1 0

H

f
T

f


, что на 

практике составляет тысячные доли герца 

(например, когда размер временного окна =10T с, 

основание вально-лопастного ряда 
0 1f  Гц, а 

диапазон поиска мод гармонического ряда 

ограничен частотой 
max =100f Гц). 

В целом отметим, что метод определения 
основания гармонического ряда посредством 

выражения (8) дает меньше ошибок с увеличением 
значения сигнал/шум (англ. Signal-to-Noise Ratio, 

SNR) и релевантные оценки можно получить 
только выше некоторого порогового значения 

0SNR > SNR . Далее покажем, как дополнительно 

можно снизить этот порог. 

На рис. 4 показан результат численного 
эксперимента (сплошная линия (без сглаживания): 

Ω = (1 + exp(–0,4364·SNR – 0,8545))
–1
, пунктирная 

линия: Ω = (1 + exp(–0,4212·SNR – 2,3633))
–1

). 
Каждая точка получена по 500 кейсам. Каждый 

кейс был получен следующим образом: генерация 

временно го ряда размера = 4096N  посредством 

суммирования сигнала (гармонического ряда) и 

белого шума; размер временного окна =1T  с; 

количество дискрет гармонического ряда =15d ; 

энергии дискрет гармонического ряда равны друг 
другу; частотная разница между дискретами 

0 = 60f  Гц; отношение сигнал/шум в ходе 

эксперимента изменялось от 12  дБ до 7  дБ. 

Причем выяснилось, что предварительное 

сглаживание полученного сгенерированного 
псевдоспектра позволяет уменьшить пороговые 

значения отношения сигнал/шум с нуля до 5 дБ. 

На рис. 4, а показано, что оптимум достигается 

посредством 40 итераций сглаживания псевдо-
спектра по трем точкам, что для этого экспе-

римента эквивалентно свертке псевдоспектра с 

функцией Гаусса ( 5  Гц). На рис. 4, б пред-

ставлен сравнительный анализ безошибочности 
оценок основания гармонического ряда при 

отсутствии сглаживания (нижняя кривая) и при 
сглаживании посредством 40 итераций (верхняя 

кривая). В реальных записях, как правило, псевдо-
спектр получается более или менее «размытым» и 

дополнительное сглаживание не всегда требуется. 
На рис. 5 представлены гистограммы оценок 

основания гармонического ряда для различных 

отношений энергии SNR  гармонического ряда и 

белого шума. Количество сгенерированных сиг-

нально-шумовых смесей для построения каждой 
гистограммы равно одной тысяче. Частотная 

разница между гармониками равна 60 Гц. Пред-
варительного сглаживания псевдоспектра не про-

изводилось. 
На рис. 6 представлены гистограммы оценок 

основания гармонического ряда для уровня 

SNR = 3 дБ. Количество сгенерированных сиг-

нально-шумовых смесей для построения каждой 
гистограммы равно 5000. Частотная разница 

между гармониками равна 60 Гц. На рис. 6, а 
рассмотрен вариант без сглаживания, на рис. 6, б 

рассмотрен вариант с предварительным сглажи-
ванием (100 итераций по трем точкам) псевдо-

спектра сигнально-шумовой смеси. 

 

В результате проверки алгоритма оценки ОВЛР 

на реальных звукозаписях шумов морских судов 
была подтверждена эффективность итерационного 

метода сглаживания по трем точкам при 
построении огибающей спектра. Также была 

подтверждена эффективность метода оценки 
ОВЛР на основе свертки логарифма энергети-

ческого спектра сигнала с разностью двух гаус-

совских функций.  
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Рис. 4: а – зависимость доли безошибочных оценок ОВЛР Ω (SNR = –3 дБ) от предварительного сглаживания псевдоспектра гармоник;  б – 

сравнение зависимостей безошибочности оценок ОВЛР при отсутствии сглаживания спектра и при сглаживании по 40 итерациям 
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Рис. 5. Гистограммы ОВЛР для различных SNR (без сглаживания): а – SNR = – 12 дБ, Ω = 1 %; б – SNR = – 3 дБ, Ω = 40 %; в – SNR = + 7 дБ, 

Ω = 98 % 
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Рис. 6. Гистограммы ОВЛР для различных сглаживаний, SNR = – 3 дБ: а – без сглаживания, Ω = 40 %; б – со сглаживанием (100 итераций), Ω  = 

65 %  
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Подведем итог и выпишем далее основные 

этапы алгоритма оценки основания гармониче-

ского ряда с помощью свертки: 

1. Оценка периодограммы сигнала 
kx  длины ,N  

размер временного окна T : 

21

=0

= .
N i jk

N
j k

k

X x e
 

  

2. Логарифмирование энергетического спектра 

сигнала: 
(0) 2= ln | | .j jS X  

3. Выделение линейчатого (центрированного) 

спектра сигнала посредством свертки (
0M  – 

итерации размытия центрированного спектра, М – 

итерации сглаживания спектра для оценки 

огибающей, 
0M M , 

min max< <Tf j Tf ): 

2 2 2 2

(0)

00

3 31 1ˆ = exp exp ,
4 4

j j

k j

f T f T
S S

M MM M

    
          
     

 

из-за краевых эффектов среднее значение полу-

ченного ряда ˆkS  немного отличается от нуля, и до 

построения автокорреляционной функции требу-

ется из полученного ряда вычитать его среднее 

значение. 

4. Оценка автокорреляционной функции 

центрированного спектра: 

max
(0)

=
min

ˆ ˆ= ,

Tf k

k j j k

j Tf

C S S



  

max
( ) ( 1) ( 1)

=
min

= ,

Tf k

p p p

k j j k

j Tf

C C C



 

  

где [1, ]p P , 1P   – количество последователь-

ных автокорреляций. 

5. Оценка ОВЛР: 
1

( )

0 ( )

{ ( )}
= 2 arctg ,

( )

P

H
H P

H

C f
f f

C f



  
   

  
 

где min max< < .Hf f f  

 

Пусть имеется некоторый набор значений 

ОВЛР, полученных в результате обработки данных 

звукозаписей шумов морских судов посредством 

вышеописанного алгоритма: 

( ) ( )

0 0 =1={ } ,
Zr r r
iF f  

где r  – номер wav-файла; 
( )

0

rF  – набор значений 

оценок ОВЛР в каждом временном окне для wav-

файла с номером r ; 
rZ  – количество временных 

окон в звуковом файле с номером r; ZrT – размер 

звуковой записи морского судна. 

Среди всех звуковых файлов отбираются 

только те, для которых справедливо неравенство 
( ) 1<r T    ( 10  ), где ( )r  – стандартное 

отклонение оценок ОВЛР для записи ,r  т. е. в 

которых изменение ОВЛР за время наблюдения 

незначительно. Ошибочными считаются такие 

оценки ОВЛР, когда выполняется следующее 

условие: 

( ) ( ) 1

0| |> ,r rf T    

где 
( )r  – среднее значение оснований вально-

лопастного ряда для записи r . 

Критерий для поиска оптимального кортежа 

параметров (
min max, , , , , HT M f f P f ) алгоритма 

оценки основания вально-лопастного ряда 

определяется следующим образом: 

( )

, , , , ,
min max

min,r

T M f f P f
Hr

   

где ( )r  – количество ошибок для звукового wav-

файла r . 

Согласно этому критерию на реальных данных 

по грузовым и пассажирским морским судам были 

получены следующие оптимальные параметры 

алгоритма: 

 Т = 10 с – размер временного окна;  

 количество итераций сглаживания =100M  

(предварительное сглаживание для размытия 

псевдоспектра 
0 =10M );  

 min max( = 2 Гц; = 200 Гц)f f  – интервал авто-

корреляции;  

 = 2P  (количество последовательных авто-

корреляций 1= 3P );  

 частота для оценки «кепстральной фазы» 

= 25Hf Гц. 

В настоящей работе представлены новые 

подходы к оценке фундаментальной частоты ряда 

гармоник по одному временному окну в условиях 

сильного шума. Алгоритм определения основания 

вально-лопастного ряда показал устойчивую 

работу в условиях, когда отношение сигнал/шум 

превышает –5 дБ. В дальнейших работах планиру-

ется усовершенствование метода для получения 
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уточненной оценки при непрерывной обработке 

сигнала по нескольким временным окнам, а также 

с использованием информационных характеристик 

[15]. В статье было показано, что эффективный 

результат может быть получен с помощью 

комплекса мер и верно подобранных значений 

параметров алгоритма. 

В процессе исследования были проведены 

численные эксперименты на некотором количестве 

записей шумов морских судов (всего было исполь-

зовано более 400 звукозаписей судов разного типа: 

пассажирские, контейнеровозы, танкеры, тягачи). 

Результаты численных экспериментов подтвер-

дили эффективность представленных методов. 

В ряде случаев было замечено, что когда 

источником шума морского судна являются 

несколько винтов, то наблюдаются биения. 

Вследствие чего по отдельным временным окнам 

сложно определить частоту оборотов вала (в этих 

окнах сигналы на вальных частотах приходили в 

противофазе). Здесь, в частности, приходится 

сталкиваться с проблемой определения достовер-

ности оценки основания вально-лопастного ряда, 

что также является целью последующих исследо-

ваний. 

Кроме того, стоит сказать, что настоящая 

работа является также составной частью группы 

подходов по исследованию спектров шумов 

морских судов. Отметим, что выявление и 

использование дополнительных информационных 

критериев в других диапазонах спектра шума 

морского судна также значительно повышает 

качество оценки ОВЛР. 
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Abstract. The problem of estimating the fundamental frequency of a harmonic series arises in 

many areas of science and technology. For example, in vibration diagnosis, it is required to esti-

mate the wear of bearings by the shift of the base of a harmonic series. In audio signal processing, 

this problem is associated with automatic instrument tuning. In speech synthesis, the fundamental 

frequency determines the pitch. In speech recognition, the frequency of the fundamental tone is an 

important information feature. In radio engineering, this problem is solved for the purpose of sig-

nal restoration, filtering, and decoding. In biomedical engineering, when analyzing a patient’s 

ECG, EEG, voice, or breathing, pathologies such as arrhythmia are diagnosed by the fundamental 

frequency. In the detection and classification of sea vessels, the most significant information cri-

terion is the base of a propeller shaft-blade harmonic series. This paper proposes new approaches 

to estimating the fundamental frequency in high noise conditions. To reduce errors, the idea is to 

use the method of periodograms, filtering, autocorrelation, and the Hilbert transform. Note that in 

high noise conditions, the estimate of the fundamental frequency of a harmonic series is signifi-

cantly improved by selecting optimal parameters: the size of the time window, filtering parame-

ters, the spectrum interval for autocorrelation, and the number of autocorrelations. 

 
Keywords: fast Fourier transform, discrete Fourier transform, autocorrelation, Hilbert transform, fundamen-

tal frequency.  
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