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Abstract. The problem of estimating the fundamental frequency of a harmonic series arises in 

many areas of science and technology. For example, in vibration diagnosis, it is required to esti-

mate the wear of bearings by the shift of the base of a harmonic series. In audio signal processing, 

this problem is associated with automatic instrument tuning. In speech synthesis, the fundamental 

frequency determines the pitch. In speech recognition, the frequency of the fundamental tone is an 

important information feature. In radio engineering, this problem is solved for the purpose of sig-

nal restoration, filtering, and decoding. In biomedical engineering, when analyzing a patient’s 

ECG, EEG, voice, or breathing, pathologies such as arrhythmia are diagnosed by the fundamental 

frequency. In the detection and classification of sea vessels, the most significant information cri-

terion is the base of a propeller shaft–blade harmonic series. This paper proposes new approaches 

to estimating the fundamental frequency in high noise conditions. To reduce errors, the idea is to 

use the method of periodograms, filtering, autocorrelation, and the Hilbert transform. Note that in 

high noise conditions, the estimate of the fundamental frequency of a harmonic series is signifi-

cantly improved by selecting optimal parameters: the size of the time window, filtering parame-

ters, the spectrum interval for autocorrelation, and the number of autocorrelations. 
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When estimating the fundamental frequency, the 

original general problem is concretized considering 

particualr differences in the types of signals and noise 

and signal-noise mixture preprocessing methods. This 

paper addresses the problem of finding the base of a 

propeller shaft–blade harmonic series (PSBHS) 

generated by a sea vessel, although the methods 

proposed are also applicable in other engineering 

disciplines. Propellers are a main source of the 

primary hydroacoustic field of sea vessels. They 

generate vibrations at two key discrete frequencies: at 

the rotational frequency of the shaft (the shaft 

frequency) and the frequency representing the product 

of the shaft frequency and the number of propeller 

blades (the blade frequency) [1, 2]. For modern 

vessels, shaft frequencies commonly lie between 1 Hz 

and 6 Hz whereas blade frequencies between 6 Hz and 

24 Hz [3]. 

Due to nonlinear effects during the emission of 

acoustic waves, a set of harmonics with multiple 

frequencies arises in the low-frequency spectrum of 

vessel noise. The amplitude of these harmonics, called 

discrete components, significantly exceeds the 

ambient noise level. A group of such discrete 

components located at multiple frequencies is called 

an acoustic harmonic series. If the source of these 

harmonics is a vessel propeller, the series is called a 

PSBHS. 

Two types of discrete components can be 

distinguished in a PSBHS: the shaft and blade 

harmonic series. The first discrete component of the 

shaft harmonic series corresponds to the rotational 

frequency of the shaft, which is directly related to the 

vessel speed [2, 4]. The basic frequency of the blade 
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harmonic series is determined by the product of the 

shaft frequency and the number of propeller blades. 

Thus, by analyzing a PSBHS, it is possible to obtain 

valuable information about the vessel design, 

including the number of propeller blades, which is 

actively used in marine target recognition systems 

based on signal spectrum analysis [5]. 

Modern hydroacoustic systems analyze such 

signals with high accuracy. However, despite the well-

developed algorithms of data processing, the final 

decision is mostly made by the operator [6]. The 

number of propeller blades is determined based on the 

spectrum parameters of the PSBHS presented to the 

operator. 

Among the signal processing methods, note 

wavelet analysis, which allows detecting 

hydroacoustic signals in the form of a harmonic series 

and measuring the fundamental frequency of the shaft 

harmonic series [4]. Another approach is spectral 

analysis with the sequential extraction of particular 

discrete components and formation of the 

corresponding harmonic series [3]. 

For operator convenience, the results of 

narrowband frequency analysis are commonly 

presented in two forms: the spectrum graph, showing 

the location of signal harmonics, and the parameter 

table of detected discrete components and their 

characteristics. When analyzing the spectrum graph, 

the operator visually identifies the harmonics in order 

to distinguish among them the main shaft and blade 

frequencies. As a rule, the shaft frequency is the first 

discrete component, whereas the blade frequency is a 

subsequent one with maximum amplitude. In addition, 

the parameter table of the discrete components 

provides the operator with numerical values of the 

frequencies, increasing the accuracy of identification 

and reducing the probability of error. 

Modern research aims at developing automated 

algorithms to decrease the dependence of analysis on 

the human factor. The conventional tool for analyzing 

acoustic noise is the Fast Fourier Transform (FFT), 

which extracts the main harmonic components of a 

signal. However, FFT has limited resolution, 

especially in low-signal and high-noise conditions. To 

overcome these limitations, the method of 

periodograms and autocorrelation analysis methods 

are used. For example, Welch’s method reduces the 

scatter of power spectral density estimates [7]; MDVR 

(Minimum Variance Distortionless Response), MUSIC 

(MUltiple SIgnal Classification), and ESPRIT 

(Estimation of Signal Parameters via Rotational 

Invariant Techniques) provide superresolution [8]. 

Autocorrelation is effective in the analysis of weak 

signals and allows identifying regular patterns even 

under strong noise. Spectral envelope analysis is also 

actively used for extracting the characteristics of blade 

noise. An adaptive spectral envelope analysis 

technique introduced in [9] considers the effect of 

fluctuations in the spectrum. 

In this paper, we propose several approaches to 

studying a mixture of a harmonic series and noise; 

when used together, they yield an estimate for the 

harmonic series base even under a small signal-to-

noise ratio (SNR) for a single time window. The idea 

is to use the logarithm of the power spectrum of the 

signal under study. The envelope of the logarithm of 

the power spectrum is estimated by iterative averaging 

over three points. As shown below, this method is very 

close to the convolution of the spectrum and the 

Gaussian function, but three-point averaging allows 

estimating the harmonic series base with smaller 

errors. Next, the pseudospectrum (the difference 

between the logarithm of the power spectrum and its 

envelope) is analyzed. 

The method of successive autocorrelations does 

not necessarily give a correct estimate for the 

harmonic series base. The result is influenced by the 

density of spectral lines, the value of the harmonic 

series base, and the noise level. To increase the 

sensitivity of this method, before applying 

autocorrelation, we “blur” the harmonic discrete 

samples a little by slightly smoothing the 

pseudospectrum. 

After several successive autocorrelations, we 

calculate the so-called cepstral phase or saphe using 

the Hilbert transform (see the explanation in Section 

1). The point is that after successive autocorrelations 

of the pseudospectrum, the result resembles a 

decreasing harmonic in the time domain, but the series 

itself relates to the frequency domain. Therefore, by 

applying the Hilbert transform to the autocorrelation 

of the pseudospectrum, we actually estimate the 

cepstral phase; when divided by the frequency to 

which this phase relates, the resulting value gives an 

estimate of the harmonic series base. 

With the development of artificial intelligence 

methods, neural network models for classifying 

vessels based on their acoustic signals have become 

popular. Convolutional Neural Networks (CNNs) 

trained on noise spectrograms were considered in [10, 

11]. Machine learning approaches improve the 

accuracy of determining propeller parameters but 

require large amounts of training data. Despite 

advances in automation, operator involvement remains  
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an important element of the analysis, especially in 

complex acoustic environments with possible 

interference and false responses. 

DEMON (Demodulation of Envelope Modulation 

On Noise) is a special method for detecting 

modulations arising from the envelope of propeller 

cavitation. DEMON serves to extract the cavitation 

noise from the overall signal spectrum and determine 

the number of shafts, the rotational frequency of a 

shaft, and the number of propeller blades. In 

bioacoustics, this method is used to analyze the signals 

of whales, dolphins, and other animals. The limitation 

of this method is the need to select the noise band, 

which requires good skills of the hydroacoustic 

operator. Low interference immunity is another 

disadvantage of this method. The algorithm proposed 

below, utilizing three-point smoothing of the 

logarithm of the power spectrum, pseudospectrum pre-

filtering, several successive autocorrelations, and the 

Hilbert transform, significantly improves interference 

immunity in PSBHS base estimation. 

 

Now we formulate the main problem of this 

research. Let 
=1{ }N

k kx  be a discrete series containing 

the sound recordings of sea vessel noise in a time

window of size T  (in seconds), with N  samples in 

one window, [1, ]k N , and = sN T f , where sf  is 

the sampling frequency. It is required to develop an 

algorithm for estimating the PSBHS base 
0f  by one 

time window and determine the optimal parameters of 

this algorithm.  

The flowchart of the PSBHS base estimation 

algorithm is described in Fig. 1. 

Periodogram construction 

The periodogram is calculated using the Discrete 

Fourier Transform (DFT) for the signal kx  of length 

N : 

21

=0

= ,
N i jk

N
j k

k

X x e
 

  

where jX  denotes the complex value of the spectrum 

at the jth frequency ( = 0, 1, , / 2j N ), the frequency 

value in Hz is calculated as = s
j

f
f j

N
. Further, the 

algorithm deals only with a frequency range 

min maxjf f f  . This limitation is due to, first, the 

absence of  harmonic series components at frequencies 

above maxf  and, second, the presence of strong noise 

at frequencies below minf . Hence, 

maxmin < <
s s

ff
N j N

f f
. 

 
 

 
 

 
Fig. 1. The flowchart of the PSBHS base estimation algorithm. 
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Taking the logarithm of the periodogram 

Taking the logarithm of the power spectrum of the 

signal eliminates sharp jumps associated with 

harmonics of the PSBHS, and the envelope can be 

separated by smoothing: 

(0) 2= ln | | .j jS X  

Iterative spectrum smoothing 

The spectrum envelope is constructed by averaging 

over three points in M  iterations: 

( 1) ( 1) ( 1)
1 1( ) = ,

3

m m m
j j jm

j

S S S
S

  
  

               (1) 

where j  is the element number in the spectral series 

maxmin < <
s s

ff
N j N

f f

 
 
 

; m  is the iteration number 

( [1, ])m M ; M  is the total number of iterations. 

We clarify that the spectrum limits make some 

corrections to the expression (1): 

( 1)

( )
( 1) ( 1) ( 1)

1 1

(for boundary points)

3

(for inner points).

m

j

m
m m m

j
j j j

S

S S S S



  

 






   




             (2) 

Definition 1. The iterative smoothing algorithm 

(2) of the series will be called the three-point 

smoothing of order .M  ♦ 

The corrections in the final three-point smoothing 

algorithm (2) cover the effect of boundary points and 

insignificantly contribute to the spectrum smoothing 

results under M N . Therefore, to simplify the 

proofs, the mathematical calculations below use the 

expression (1). 

Note that M  iterations in (1) are almost equivalent 

to weighting the original series elements by the 

Gaussian function with a standard deviation of 

2

3

M
   0.820467 .M  Examples for = 5M  and 

= 50M  are given in Fig. 2. (Also, see an example for 

M = 1,..., 4 in the table below.) 

 

 
 

Fig. 2. The corresponding weights of the series elements obtained  

by formula (1) for M = 5 and M = 50 and the Gaussian function  

( σ = 2 / 3М ): a visual comparison. The abscissa axis shows the 

deviations of the element number of the original series from j when 

estimating the weights.  

 

Let us formulate the following result. 

Lemma 1 (weight calculation). The M  

successive iterations (1) generate the weights that can 

be approximately estimated using the Gaussian 

function with the parameter
2

=
3

M
   (M >> 1): 

(0) 2
( )

=

= exp .
4 / 34 / 3

M
j kM

j

k M

S k
S

MM





  
  

   
        (3) 

 
The weights of the three-point smoothing algorithm depending on the iteration number  
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P r o o f. The fact that the weights obtained through 

successive iterations can be estimated by the Gaussian 

function is established technically. We show that in M  

iterations, the weights with the three-point averaging (1) are 

approximated by the Gaussian function with the parameter 

2
=

3

M
 . 

Let M  be sufficiently large and consider iteration 

1;M   given that the weights in the three-point averaging 

algorithm at step M  are approximated by the Gaussian 

function with the parameter 2 =M M  , for j M  we 

have 

2 2 2( 1) ( ) ( 1)

2 2 22 2 2

2 2 2

2 2 2

2

22 2
2

2

1

3 2

1 ( 1) ( ) ( 1)
1 1 1

2 2 23 2

1 1 2 1 1
= 1 .

1322 2
1

3

j j j

j

e e e

j j j

j e

 
  

  




 
  
  
 

  
      

     

  
    

         
 

 

At step 1M  , the coefficient at the exponent must be 

determined by the new parameter 2

1 = ( 1)M M   . 

Therefore, 

2

2

1

1 2
= ( 1) = 1 .

3 3
M M M M M

M


 
           

 
 

It immediately follows that 
2

=
3

  and, accordingly, 

2
=

3

M
 . ♦  

We proceed to the next results. 

Lemma 2 (spectrum smoothing by convolution). 

The smoothing result with M  successive iterations (1) 

applied to the logarithm of the power spectrum of the 

signal in a time window T  can be approximately 

estimated by the convolution of this logarithm and the 

Gaussian function with the parameter 
1 2

=
3

M

T
    

(M >> 1): 

1 2 2
( ) (0) 2

=

3 3
= exp .

4

M
M

j j k

k M

k T
S S M

M







  
  

   
      (4) 

The alternative form is 

( ) (0)( ) = ( ) ( , ).MS f S f N f                  (5) 

P r o o f. When increasing the time window size T , the 

density of the spectral lines grows whereas the standard 

deviation (the parameter of the Gaussian function used to 

estimate the weights, see formula (3) in Lemma 1) is 

reduced proportionally to .T  Observing the normalization 

condition of the Gaussian function, we obtain the desired 

expression (4). ♦ 

Lemma 3 (spectrum smoothing by the cepstrum 

and Gaussian function). The smoothing result with 

M  successive iterations (1) applied to the logarithm 

of the power spectrum of the signal in a time window 

T  can be approximately estimated by the Fourier 

transform of the product of its cepstrum, 
1 (0)( ) = ( )K F S f     , and the Gaussian function with 

the parameter * 3
=

2
T

M
  (M >> 1):  

( ) *= ( ) ( , ) .MS F K N       

P r o o f. Note that the expression (5) is the convolution 

of the logarithm of the signal power spectrum and the 

Gaussian function. By the well-known formula for the 

Fourier transform of the product of two functions  

(      =F f g F f F g  ), the above expression is nothing 

but the Fourier transform of the product of the inverse 

Fourier transform of the logarithm of the power spectrum 

(which is the cepstrum) and the inverse Fourier transform of 

the Gaussian function in the frequency domain with the 

parameter 
1 2

=
3

M

T
  (which is also the Gaussian 

function in the time domain with the parameter 

* 3
=

2
T

M
 ). Also, see an example in Fig. 3a. ♦  

Lemma 4 (line spectrum extraction). The line 

spectrum 
(0) ( )ˆ( ) = ( ) ( )MS f S f S f  of the signal 

(defined as its pseudospectrum above) can be 

approximately estimated in the following ways: 

– via the convolution of the logarithm of its power 

spectrum with the difference between the delta 

function ( )f  and the Gaussian function: 

 (0)ˆ( ) = ( ) ( ) ( , ) ,S f S f f N f     

where ( ) ( , )f N f     and   , with   

determining the accuracy of the line spectrum and   

the degree of smoothness of the spectrum envelope. 

– via the Fourier transform of the product of the 

cepstrum of the original signal and the difference 

between the constant and the Gaussian function: 

 *ˆ( ) = ( ) ( , ) ,S f F K N      
 

 

where the cepstrum is 
1 (0)( ) = ( )K F S f      and 

 1= ( )F f   ( ( ) ( , ))f N f    . 
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(a) 

 

(b) 
 

 
Fig. 3: (a) spectrum envelope estimation (Lemma 3) and (b) centered logarithmic power spectrum (Lemma 4). The estimates are obtained by two methods: 
iterative spectrum smoothing with envelope subtraction (solid lines) and envelope estimation with centered spectrum estimation via the cepstral method (dashed 

lines).  

 
P r o o f. The desired result follows from Lemmas 2 and 

3, the additivity of the Fourier transform, and the Fourier 

transform formula for the delta function: 

(0) ( )

(0) (0)

(0)

ˆ( ) = ( ) ( ) =

( ) ( ) ( , )

( ) ( ( ) ( , )).

MS f S f S f

S f S f N f

S f f N f



   

    

 

In turn, applying the Fourier transform formula for the 

product of two functions, we obtain 

 

(0)

1 (0) 1

*

ˆ( ) = ( ) ( ( ) ( , ))

[ ( )] [( ( ) ( , ))]

= ( ) ( , ) .

S f S f f N f

F F S f F f N f

F K N

 

   

      

      
 

 

In numerical calculations with the discrete Fourier 

transform, an estimate of the delta function can be obtained 

from the Gaussian function with a small parameter 
  , 

with an appropriate normalization condition, the value 

 1= ( )F    ; see an example in Fig. 3b. (By the 

normalization condition, the sum of all weights obtained by 

the Gaussian function approximation must be 1.) ♦  

Recall that cepstrum-related methods consider 

functions that can be viewed as spectra of logarithmic 

spectra. The concept of a cepstrum was introduced in 

1963. 

A power cepstrum is defined as “the power 

spectrum of a logarithmic power spectrum” [12]. 

Power cepstrum was proposed as a more efficient 

alternative to the autocorrelation function in detecting 

echoes in signals.  

As the corresponding function describes the 

spectrum of a spectrum by definition, following a 

terminological analogy with “spectrum,” A.S. Gol’din 

gave this function the name “cepstrum.”
1
 

However, the most important feature of cepstrum 

is not its representation as the spectrum of a spectrum 

but the associated logarithmic transformation of the 

original spectrum and the spectrum processed further. 

Note that the autocorrelation function, determined 

from the eigen power spectrum by the inverse Fourier 

transform, can also be treated as the “spectrum of a 

spectrum.” In essence, the currently used notion of a 

cepstrum defines a power cepstrum as “the inverse 

Fourier transform of a logarithmic power spectrum.” 

The difference between this definition and the 

definition of an autocorrelation function is only the 

logarithmic transformation of the original spectrum. 

The application of power cepstra to study PSBHSs 

is based on the former’s capability to detect spectrum 

periodicities, such as a series of uniformly distributed 

harmonics. From the standpoint of this application, an 

important advantage of cepstra is related to their small 

dependence on the propagation paths of signals, 

including the paths from sources to measurement 

points. 

Trend subtraction and frequency range nar-

rowing 

Further, to separate the line spectrum, containing 

important information about a PSBHS, we subtract its 

envelope from the logarithm of the signal power 

                                                           
1 Similarly, the terms “quefrency,” “rahmonic,” “lifter,” 

“gamnitude,” and “saphe” evolved from analogy with the 

conventional terms “frequency,” “harmonic,” “filter,” 

“magnitude”, and “phase.” The terms related to “lifter” 

(“liftering,” “liftered,” etc.), indicating the filtering process in the 

cepstral domain, are occasionally used in the literature as well. 
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spectrum. In this case, the desired centered spectral 

series is given by 

(0) ( ) (0) ( )ˆ ˆ= ( ) = ( ) ( ) = .M M

j j j j j jS S f S f S f S S   

Then, an appropriate frequency range 

min max[ , ]jf f f  is determined. Accordingly, the 

element number j  of these frequencies satisfies the 

two-sided inequality 
min max< <Tf j Tf . 

Successive autocorrelations 

We apply several successive autocorrelations to the 

spectrum (precisely, to the centered logarithm of the 

spectral power) to smooth it further, improve pattern 

identification, and extract useful information from the 

spectrum more accurately. 

Each autocorrelation calculation averages the 

information, removing noise components and short-

term fluctuations. Performing several successive 

autocorrelations enhances this effect. Noise 

components often have a short period or random 

nature, and autocorrelation helps isolate regular and 

repeating elements. If the signal spectrum has a 

complex structure with several periodic components 

(contains several harmonic series), performing several 

autocorrelations will identify these components more 

accurately. With each autocorrelation step of the 

spectrum, more stable harmonic series are separated, 

whereas unstable ones and various noise are smoothed 

out. Therefore, several successive autocorrelations 

allow extracting the most stable component of 

propeller noise, i.e., the PSBHS base. 

When analyzing the PSBHS, several successive 

autocorrelation steps for the logarithm of the power 

spectrum better isolate the low-frequency component 

(shaft frequency) against the background of the 

higher-frequency component (blade frequency). Note 

that when autocorrelation is applied to the spectrum, 

the low and high frequencies seem to change their 

places: the low-frequency shaft rotation is manifested 

by rapid peaks whereas the blade frequency by rarer 

peaks; after each autocorrelation, the shaft frequency 

is manifested more and more strongly. 

The repeated autocorrelation of the spectrum is 

calculated for the smoothed result from its first 

autocorrelation, which gives additional smoothing. 

Since the noise components in the first autocorrelation 

are attenuated, averaging them again in the second 

autocorrelation even more damps both random bursts 

and non-harmonic components. However, there is a 

natural limitation: a very large number of 

autocorrelations will eventually smooth even useful 

information about stable, regular patterns that have 

long-term structure associated with the PSBHS base. 

We define the autocorrelation function of the cen-

tered logarithmic power spectrum ˆ jS  of order p = 0 as 

follows: 

max
(0) (0)

=
min

ˆ ˆ( ) = = .

Tf k

k k j j k

j Tf

C f C S S



  

Next, we define 
( )p

kC  as the autocorrelation func-

tion of the centered logarithmic power spectrum ˆ jS  of 

order p : 

max
( ) ( ) ( 1) ( 1)

=
min

( ) = = ,

Tf k

p p p p

k k j j k

j Tf

C f C C C



 


 

where [1, ]p P  and P + 1 is the number of succes-

sive autocorrelations. 

Hilbert transform 

Modern methods of analytic signal theory [14] 

serve to extract (demodulate) an instantaneous 

amplitude (envelope), instantaneous phase, and 

instantaneous frequency from an oscillatory process. 

To obtain these instantaneous functions, one 

transforms an original process ( )x t , defined on some 

interval, into the conjugate process ˆ( )x t  using the 

integral Hilbert transform [5]: 

1 ( )
ˆ( ) = { ( )} = .

x
x t x t d

t








    

The analytic signal can be written as 

ˆ( ) = ( ) ( ).ax t x t ix t  

As is easily verified, the function 0sin t  

represents the Hilbert transform of the function 

0cos t . Therefore, the analytic signal corresponding 

to 0cos t  is 

0 0 0( ) = cos sin = exp( ).ax t t i t i t     

It seems convenient to write a general analytic 

signal in exponential form as 

 ( ) =| ( ) | exp ( ) ,a ax t x t i t  

where 

 

1/2
2 2ˆ| ( ) |= ( ) ( ) ,

ˆ( ) = arctg ( ) / ( ) .

ax t x t x t

t x t x t

  


                  (6) 

Now, by letting 0( ) = ( )t t t   , we have 

  0 0( ) =| ( ) | exp ( ) exp( ) = ( )exp( ).a ax t x t i t i t t i t     

The complex envelope ( )t  is obtained by 

removing the complex factor associated with the 

carrier from the analytic signal: 

 0( ) = ( )exp( ) =| ( ) | exp ( ) .a at x t i t x t i t     
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If ( )t  is a narrowband function relative to 

0 / 2 ,   it will have properties intuitively associated 

with the concept of envelope. 

For an original signal in the frequency domain, the 

physical meaning of the integral Hilbert transform is 

the phase shift of all spectral components of this signal 

by / 2 . The double Hilbert transform leads to the 

original process but with the opposite sign: it shifts the 

original signal by  . 

We apply the Hilbert transform to 
( ) ( )P

kC f  to 

obtain the analytic autocorrelation 

( ) ( ) ( )( ) = ( ) { ( )}.P P P

k k kC f C f i C f  

Here, the cepstral phase is defined as the argument 

of the analytic autocorrelation: 

 ( ) ( ) ( )= arg ( ) = arg ( ) { ( )} ,P P P

k k k kC f C f i C f   

( )

( )

{ ( )}
= arctg .

( )

P

k
k P

k

C f

C f

 
  

 
                 (7) 

Dwelling on these formulas, we introduce the 

following. 

Definition 2. The cepstral phase is the value given 

by the expression (7). ♦ 

Let Hf  denote the frequency for which the cepstral 

phase is calculated. Such a designation emphasizes 

that the saphe is calculated via the Hilbert transform. 

Lemma 5 (the harmonic series base and the 

Hilbert transform). Consider a given signal ( )x t  

with a non-constant amplitude and a frequency slowly 

changing during the entire observation period T . 

Then the average period 0T  of signal oscillations over 

a time t  can be estimated as 

1

0

{ ( )}
= 2 arctg , 0 < <

( )

x t
T t t T

x t



  
   

  
. 

The proof is technical and can be easily derived 

from the expression (6). 

This lemma leads to the following result. Let the 

signal ( )x t  in Lemma 5 be the correlogram ( )PC  of 

the logarithmic power spectrum of a signal-noise 

mixture containing a signal (a harmonic series with a 

base 0f ) and some noise with a sufficiently high SNR 

value. Then the harmonic series base can be estimated 

as 

1
( )

0 ( )

{ ( )}
= 2 arctg ,

( )

P

H
H P

H

C f
f f

C f



  
   

     

       (8) 

where min max< < .Hf f f  

Note that the frequency 
Hf  should be assigned 

depending on a particular task and conditions. For 

example, under strong noise, the recommendation is to 

choose this frequency in the range 

max max0.1 < < 0.2Hf f f  (the correlogram “breaks” at 

the right end due to the large noise component). On 

the other hand, 
maxHf f  is recommended when 

estimating the PSBHS base with high accuracy in 

weak noise conditions. As is easily shown, the PSBHS 

base estimate (8) represents the averaging of the 

frequency differences of the autocorrelation peaks; in 

turn, this determines the estimation accuracy 1 0

H

f
T

f

 , 

constituting thousandths of a hertz in practice. (For 

example, for a time window of =10T s, the PSBHS 

base is 0 1f  Hz, and the search range of the 

harmonic series modes is limited by the frequency 

max =100f  Hz.) 

In general, we underline that the harmonic series 

base estimation method (8) gives less error with 

increasing SNR, and relevant estimates can be 

obtained only above a certain threshold 

0(SNR > SNR ).  Below, we demonstrate how this 

threshold can be reduced. 

Figure 4 presents the results of a numerical 

experiment: Ω = (1 + exp(–0.4364·SNR – 0.8545))
-1

 

(the solid line, without smoothing) and  

Ω = (1 + exp(–0.4212·SNR – 2.3633))
–1

 (the dashed 

line). Each point was constructed from 500 cases. 

Each case was obtained by generating a time series of 

length = 4096N  via summing a signal (a harmonic 

series) and white noise with the following parameters: 

= 1T s (time window), =15d  (the number of 

harmonic series samples, with the same power level), 

0 = 60f Hz (the frequency difference between 

samples), and SNR = 12  dB,…, 7  dB. 

As discovered, the pre-smoothing of the 

pseudospectrum allows reducing the SNR thresholds 

from 0 to 5  dB. In Fig. 4a, the optimum is achieved 

by 40 iterations of the three-point smoothing of the 

pseudospectrum; for this experiment, it is equivalent 

to the convolution of the pseudospectrum and the 

Gaussian function ( 5  Hz). Figure 4b shows a 

comparative analysis of the error-free harmonic series 

base estimates without smoothing (the lower curve) 

and with smoothing in 40 iterations (the upper curve). 

As a rule, the pseudospectrum in real sound recordings 

is more or less “blurred,” and additional smoothing is 

not always necessary. 

Next, Fig. 5 provides the histograms of the 

harmonic series base estimates for different SNR  

values of the harmonic series and white noise. One 
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thousand (1000) signal-noise mixtures were generated 

to construct each histogram. The frequency difference 

between harmonics was set equal to 60 Hz. No pre-

smoothing of the pseudospectrum was performed. 

Figure 6 shows the histograms of the harmonic 

series base estimates for SNR = –3 dB. Five thousand 

(5000) signal-noise mixtures were generated to 

construct each histogram. The frequency difference 
 

 
(a) 

 
 

(b) 

 
Fig. 4: (a) the share of error-free PSBHS base estimates Ω (SNR= –3 dB) depending on the pre-smoothing of the harmonic pseudospectrum and (b) a 

visual comparison of the dependences of error-free PSBHS base estimates without spectrum smoothing and with spectrum smoothing in 40 iterations. 

 
 

 

(a) 
 

 

 
(b) 

 

 

 

(c) 
 

 

Fig. 5. The histograms of PSBHS bases for different SNR values (without smoothing): (a) SNR = – 12 dB, Ω = 1%, (b) SNR = – 3 dB, Ω = 40%, and (c) 

SNR = + 7 dB, Ω = 98%. 

 

 

(a)  
 

(b)  

 
Fig. 6. The histograms of PSBHS bases for different smoothing methods, SNR = – 3 dB: (a) without smoothing, Ω = 40% and (b) with smoothing in 100 

iterations, Ω = 65%. 
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between harmonics was set equal to 60 Hz. Figure 6a 

corresponds to the solution without smoothing; 

Fig. 6b, to the solution with the pre-smoothing (100 

iterations over three points) of the spectrum of the 

signal-noise mixture. 

 

The PSBHS base estimation algorithm was tested 

on the real sound recordings of sea vessel noise, and 

the effectiveness of the iterative three-point smoothing 

method was validated for constructing the spectrum 

envelope. Also, the effectiveness of the PSBHS base 

estimation method with the convolution of the 

logarithm of the signal power spectrum and the 

difference of two Gaussian functions was validated.  

Summarizing the outcomes, we write the main 

steps of the PSBHS base estimation algorithm using 

convolution: 

1. Estimating the periodogram of the signal 
kx  of 

length N  in a time window of size T : 

21

=0

= .
N i jk

N
j k

k

X x e
 

  

2. Taking the logarithm of the power spectrum of 

this signal: 

(0) 2= ln | | .j jS X  

3. Extracting the line (centered) spectrum of the 

signal by convolution ( 0M  blurring iterations for the 

centered spectrum and M spectrum smoothing 

iterations for envelope estimation, where 0M M  

and min max< <Tf j Tf ): 

2 2 2 2
(0)

00

1 1ˆ = exp exp .k j

j T j T
S S

M MM M

    
       

    

 

Due to boundary effects, the mean value of the series

ˆ
kS  slightly differs from zero, and the mean value is 

subtracted from the obtained series before constructing 

the autocorrelation function. 

4. Estimating the autocorrelation function of the 

centered spectrum: 

max
(0)

=
min

ˆ ˆ= ,

Tf k

k j j k

j Tf

C S S



  

max
( ) ( 1) ( 1)

=
min

= ,

Tf k

p p p

k j j k

j Tf

C C C



 

  

where [1, ]p P  and P  + 1 is the number of 

successive autocorrelations. 

5. Estimating the PSBHS base: 

1
( )

0 ( )

{ ( )}
= 2 arctg ,

( )

P

H
H P

H

C f
f f

C f



  
   

  

 
where 

min max< < .Hf f f  

 

Consider a set of PSBHS bases obtained by 

processing the sound recordings of sea vessel noises 

using the above algorithm: 

( ) ( )

0 0 =1={ } ,
Zr r r
iF f  

where r  is the WAV file number; 
( )

0

rF  is the set of 

PSBHS base estimates in each time window for the  

r th WAV file; 
rZ  is the total number of time 

windows in the r th WAV file; finally, ZrT is the size 

of the sea vessel sound recording. 

Among all WAV files, we take those satisfying the 

inequality ( ) 1<r T    ( 10  ), where ( )r  is the 

standard deviation of the PSBHS base estimates for 

the r th recording (i.e., the ones with an insignificant 

change of the PSBHS base estimates during the 

observation time). Erroneous estimates are such that 

( ) ( ) 1

0| |> ,r rf T    

where 
( )r  denotes the mean value of the PSBHS 

bases for the r th Wav file. 

An optimal tuple of the parameters  

( min max, , , , ,T M f f P  and Hf ) of the PSBHS base 

estimation algorithm is selected according to the 

criterion 

( )

, , , , ,
min max

min,r

T M f f P f
Hr

   

where ( )r  is the number of errors for the r th WAV 

file.  

The following optimal parameters of the algorithm 

were obtained on real data on cargo and passenger sea 

vessels in terms of this criterion: 

 T = 10 s (the time window size),  

 =100M  (the number of smoothing iterations 

given 0 =10M  pre-smoothing iterations to blur the 

pseudospectrum),  

 min max( = 2, = 200)f f  Hz (the autocorrelation 

interval),  
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 P = 2 (P + 1 = 3 is the number of successive 

autocorrelations),  

 = 25Hf  Hz (the frequency for estimating the 

“cepstral phase”). 

This paper has presented new approaches to 

estimating the fundamental frequency of a harmonic 

series from a single time window in high noise 

conditions. The algorithm for determining the base of 

a propeller shaft–blade harmonic series has 

demonstrated stable performance under a signal-to-

noise ratio exceeding –5 dB. As expected, in future 

works, the method will be improved to get a refined 

base estimate by continuous signal processing over 

multiple time windows as well as by using information 

characteristics [15]. As shown above, an effective 

solution can be obtained via a set of measures and 

correctly chosen values of the algorithm parameters. 

In the course of this study, numerical experiments 

have been conducted on the sound recordings of sea 

vessel noises (in total, over 400 sound recordings of 

passenger ships, container ships, tankers, and tugs). 

According to the experiment results, the methods are 

effective. 

In several cases, when the sea vessel noise is 

generated by several propellers, beats have been 

observed. Consequently, it is difficult to determine the 

shaft frequency from separate time windows (in these 

windows, the signals at the shaft frequencies arrive in 

counter-phase). Here, one faces the validity problem 

of PSBHS base estimation, which is also the objective 

of subsequent research. 

Also, this work is part of a group of approaches to 

investigating the noise spectra of sea vessels. Note that 

the identification and utilization of additional 

information criteria in other spectrum ranges of sea 

vessel noises significantly improves the estimation 

quality of the PSBHS base as well. 
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