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Аннотация. A differential game of several players is considered as follows. One player (at-

tacker) penetrates some space, and several other players (pursuers) appear simultaneously to 

intercept the attacker. Upon detecting the pursuers, the attacker tries to evade them. The dynam-

ics of each player are described by a time-invariant linear system of a general type with scalar 

control. A quadratic functional is introduced, and the differential game is treated as an optimal 

control problem. Two subproblems are solved as follows. The first subproblem is to construct a 

strategy for pursuing the attacker by several players having complete equal information about 

the game. The second subproblem is to construct such a strategy under incomplete information 

about the attacker actively opposing the pursuers. The simulation results are presented. The ze-

ro-sum differential game solution can be used for studying the final stage of pursuit, in which 

several pursuers and one evader participate. 
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INTRODUCTION 

The theory of differential games as a branch of 

mathematical control theory is closely related to the 

mathematical theory of optimal processes, game theo-

ry, calculus of variations, and the theory of differen-

tial equations. Problems of the theory of differential 

games stem from many topical applications, such as 

the pursuit of one controlled object by another, bring-

ing a controlled object into a given state under un-

known disturbances, and military or economic prob-

lems, to name a few. The formation of the theory of 

differential games is associated with R.P. Isaacs [1, 

2], J.V. Breakwell [3], L.S. Pontryagin [4, 5], E.F. 

Mishchenko [6], B.N. Pshenichny [7], and many other 

foreign and Soviet scientists. Since the late 1970s, an 

independent area in the applied theory of differential 

games has appeared, dealing with the problems of 

pursuit, evasion, and target defense [8–19]. In the 

works by L.S. Pontryagin and E.F. Mishchenko [4–6], 
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sufficient conditions for completing pursuit in linear 
differential games were established. In the research of 
N.N. Krasovskii, A.I. Subbotin [8], their students and 
colleagues, positional differential games were studied; 
for this class of games, the problems of approach and 
evasion were formulated, and control procedures im-
plemented on a computer were proposed. The devel-
opment of differential games theory with application 
to conflict-controlled systems by the 1990s was sum-
marized by L.A. Petrosyan in his book [9]. The theory 
of differential games as applied to pursuit problems 
significantly evolved thanks to A.A. Melikyan, L.S. 
Vishnevetsky, N.V. Ovakimyan [10–13], and V.S. 
Patsko and S.S. Kumkov [14, 15]. At the 18th and 
19th IFAC World Congresses, there were separate 
sections devoted to the theory of differential games 
and the practice of applying this theory to control 
problems in conflict states [15–19]. 

This paper considers a differential game with sev-

eral players. One player (attacker) penetrates some 

space, and several other players (pursuers) appear 

simultaneously to intercept the attacker. Upon detect-

ing the pursuers, the attacker tries to evade them. The 

dynamics of each player are described by a time-
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invariant linear system of a general type with scalar 

control. Note that this formulation of the game-

theoretic problem is quite popular. For example, in the 

papers [19, 20], distributed game strategies for similar 

problems were developed and analyzed. The proposed 

solutions were based on the integration of cooperative 

control theory and differential game theory. As 

demonstrated therein, the proposed non-zero-sum 

game strategies are the Nash solution in terms of 

functionals (performance criteria) introduced to assess 

the players’ actions. In this paper, a quadratic perfor-

mance criterion is introduced, and the differential 

game is treated as an optimal control problem [21], 

i.e., a zero-sum differential game. Two subproblems 

are solved as follows. The first subproblem is to con-

struct a strategy for pursuing the attacker by several 

players who have complete equal information about 

the game. The second subproblem is to construct such 

a strategy under incomplete information about the 

attacker who is actively opposing the pursuers. The 

simulation results are presented. The zero-sum differ-

ential game solution can be used for studying the final 

stage of pursuit, in which several pursuers and one 

evader participate. 

This paper is organized as follows. Section 1 for-

mulates the problem in which there are several pursu-

ers and one attacker. The pursuers try to intercept the 

attacker, and the attacker tries to evade them. Each 

player can detect other players within its radius of 

sensitivity. Therefore, the game is a game with dis-

tributed information. Assumptions are made to ex-

clude the cases when the attacker observes no pursu-

ers or each pursuer observes no objects within its ra-

dius of sensitivity. 

A common performance criterion is introduced in 

the zero-sum game to assess the actions of the pursu-

ers and the attacker evading them. The pursuers seek 

to minimize this criterion, whereas the evading at-

tacker to maximize it.  

Section 2 considers the classical differential game 

with global information. The outcome of this game is 

based on optimal control theory. A theorem on the 

existence of solutions of the zero-sum differential 

game is proved. Also, Section 2 considers the differ-

ential game with distributed information. 

Section 3 deals with a situation when the evading 

attacker artificially jams the pursuers to gain an ad-

vantage in the game. This means that the pursuers will 

receive information about the evader’s position with 

some noise. Hence, the controls constructed by the 

pursuers will contain this noise. Thus, the trajectories 

along which the pursuers will intercept the evader are 

suboptimal. In addition, the attacker constructs its 

strategy for all pursuers detected, trying to escape the 

center of mass of all pursuers. Since their positions 

are subjected to noise, the attacker’s trajectory will 

also contain a noise component. 

Section 4 presents the simulation results for the 

differential game of pursuit in various statements con-

sidered in the previous sections. 
 

1. PROBLEM STATEMENT  

In the problem under consideration, the number of 

players is (n+ 1), namely, n pursuers and one attacker 

evading the pursuers. Each player can detect other 

players in its radius of sensitivity. Thus, the game is a 

game with distributed information. Let us make some 

assumptions. 

Assumption  2.1.  The observation between any 

pursuer–attacker pair is mutual, whereas the observa-

tion between two pursuers is not necessarily mutual. 

Assumption  2.2.  There exists at least one pursu-

er–attacker pair in which each member observes the 

other member, and each pursuer observes at least one 

other pursuer. 

Without these assumptions, the following undesir-

able cases are possible in the problem: the attacker 

observes no pursuers, or each pursuer observes neither 

the attacker nor the other pursuers. 

Suppose that the differential game of pursuit takes 

place in the m-dimensional Euclidean space. The posi-

tions of the players can be written as the vectors 

 
T

1 2( ) ( ), ( ),..., ( )my t y t y t y t , ( ) my t R , for the at-

tacker and 
T

1 2( ) ( ), ( ),..., ( )j j j jmx t x t x t x t    , 

( )j

mx t R , for pursuer j = 1, 2,…, n, respectively. 

We introduce a vector ( ) m

jz t R
 
of the form  

( ) ( ) ( ), 1, 2, 3...,j jz t x t y t j n   , 

which specifies the distance between the attacker and 

pursuer j. This vector determines the radius of sensi-

tivity for each player.   

Denoting T T T T

1 2, , , nx x x x     and T T

1 ,z z 
T T

2 , , nz z  , we compactly write the distance as  

( ) ( ) ( )nz t x t y t  1 , 

where n1  is the unitary vector of dimensions 1n , 

and the symbol   indicates the Kronecker product. In 

the problems considered below, 0 , ft t t   .  

Assumption 2.3. Let us formulate the objectives 

of different players in this differential game. Consider 

a positive number ε 1 :  
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– If at some instant 1t , 0 1 ft t t  , the condition 

2

1( ) εjz t   holds due to the actions of one or several 

pursuers, then the game ends because the attacker is 

intercepted. This outcome is the pursuers’ objective in 

the game.   

– If for any t , where 0 ft t t  , we have 

2
( ) εz t  , i.e., the condition of interception is not 

valid, then at ft t  the game ends upon reaching the 

prescribed duration. This outcome is the attacker’s 

objective in the game. 

Let the game dynamics be described by an ordi-

nary linear differential equation [9, 10] of the form 

( ) ( ) ( )np e

d
z t u t u t

dt
  1 ,               (1) 

where ( ) ( )p

d
u t x t

dt
  and ( ) ( )e

d
u t y t

dt
  are the ve-

locities of the pursuers and attacker, respectively.  

In the non-zero-sum game for the system (1), we 

can introduce two performance criteria [19]:  

The group of n pursuers strives to minimize the first 

criterion 

0

T

T

( )
1 1

( )( ( ), ( )) ( ) ( )
2 2

( )

ft

pp p pf f f

t

n e

z t

u tJ z u k z t z t

u t

 
 

     
  


1

 

 

( )0 0

( )0 0 .

0 0 0 ( )

p

pp

n e

z tq I

u tr I dt

u t

  
  

   
      1

           (2) 

The evading attacker seeks to maximize the se-

cond criterion  

0

T

T

( )
1 1

( )( ( ), ( )) ( ) ( )
2 2

( )

ft

pe ef f f

t

n e

e

z t

u tJ z u k z t z t

u t

 
 

      
  


1

 

( )0 0

( )0 0 0 ,

0 0 ( )

e

p

e n e

z tq I

u t dt

r I u t

   
  

   
      1

         (3) 

where , , ,pf ef p ek k q q , ,pr  and er  are positive parame-

ters.  

The first summand in the criterion (2) characteriz-

es a finite value of the differential game, and the pa-

rameter ε determines the instant of successful inter-

ception, i.e., the fulfillment of the condition 
2

1 0 1( ) ε, fz t t t t   . Hence, the non-execution of 

interception should be highly estimated by the pursu-

ers. With this aspect in mind, in the case ε 1 , the 

parameter pfk  can be chosen as 1/ εpfk  . For the 

evading attacker, the first summand in the criterion 

(3), which estimates the value of its game at the ter-

minal instant, should be small. In other words, the 

parameter efk  can be chosen as εefk  .  

According to these performance criteria, the pur-

suers strive to minimize the weighted distances be-

tween them and the evading attacker under the mini-

mum energy costs. In contrast, the evading attacker 

seeks to maximize the weighted distances between it 

and the pursuers under the minimum energy costs. 

Unlike [19, 20], this paper considers the zero-sum 

differential game. There is a common performance 

criterion minimized by the n pursuers and maximized 

by the evading attacker. Treating the differential game 

as an optimal control problem [21], we combine the 

criteria (2) and (3) as follows: 



   
0

T T T

T

( ( ), ( ), ( )) ( ( ), ( )) ( ( ), ( ))

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( ) , (4)

f

p e p p e

t

f f p p

t

n e n e

eJ z u u J z u J z u

z t Fz t z t Qz t u t Ru t

u t P u t dt

          

   

  



1 1

where , , ,pf ef n p e n p nF k k I Q q q I R r I         
 

and
 

,e nP r I  the parameters , , , , ,pf ef p e pk k q q r  and 

er  
are positive, and nI  is an identity matrix of dimen-

sions n n . 

The positive definiteness of the matrices F, Q, R, 

and Р  ensures the existence of optimal controls in 

this differential game [22]. As shown below, choosing 

the parameters pr  and er  so that p er nr  corresponds 

to the case of “strong” pursuers. (In other words, the 

pursuers excel the evader by their dynamical capabili-

ties.)   

For the mathematical description of different sit-

uations (stages) in the game with distributed infor-

mation, by analogy with the paper [19], we introduce 

the “sensitivity matrix”  

01 02 0

10 12 1

0 1 2

1 ( ) ( ) ( )

( ) 1 ( ) ( )
( )

( ) ( ) ( ) 1

n

n

n n n

s t s t s t

s t s t s t
S t

s t s t s t

 
 
 
 
 
 

,      (5) 

where the subscript “0” indicates the evading attacker, 

and the subscripts from “1” to “n” the corresponding 

pursuers. For players i, j and an instant t , the parame-

ter 
0( ), , , , 0, 1, 2,...,fijs t t t t i j n    , 0 ( ) 1ijs t  , 

is the degree of significance of the information about 

the latter player’s state used by the former player for 

accomplishing its objective in the differential game.  
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In the case 0 ( ) 1ijs t  , player i  observes player j ; 

otherwise ( ( ) 0ijs t  ), does not. Since each player 

always observes itself, the diagonal elements of the 

matrix (5) are constant and equal to 1. Thus, at sepa-

rate stages, the players’ information to accomplish 

their objective in the differential game may change, 

reflected via appropriate controls of the attacker and 

pursuers. This paper does not consider any methods 

for determining the degree of significance, i.e., the 

problem of finding the parameters of the matrix ( )S t  
depending on the game conditions. The criterion (4) 

for the zero-sum differential game with distributed 

information will be presented in Section 2.2. 

In the game with global information, the sensitivi-

ty matrix is constant, and its elements are equal to 1. 

2. CLASSICAL DIFFERENTIAL GAME AND GAME WITH 

DISTRIBUTED INFORMATION 

2.1. Classical differential game 

The classical differential game is a game with 

global information. It rests on the theory of optimal 

control: the problem is to design controls 
0 ( )рu t  and 

0 ( )eu t  for which 

0 0

0 0

( , ( ), ( )) ( , ( ),

( )) ( , ( ), ( ))

р e р

e р e

J z u t u t J z u t

u t J z u t u t

 






. 

For the classical differential game with several 

pursuers and linear feedback controls, we have the 

following result. 

Theorem 3.1.  Consider a differential game with n 

pursuers and one evading attacker with the dynamics 

(1) and the performance criterion (4). This game has 

a value under the condition p er nr   if the strategies 

of players are given by  

T

0 01
( ) ( ) ( ), ( )

1
( ) ( ) ( ), (6)

p

n m

e

р eu t K t z t u t
r

I K t z t
nr

  

  1

  

where 

T1 1
( ) ( ) ( )

( ) , ( ) . (7)

n n n m

p e

p e n f pf ef n

d
K t K t I I

dt r nr

K t q q I K t k k I

 
       

  

          

1 1

This assertion is proved in the Appendix. 

From equation (7) it follows that the matrix ( )K t  

is symmetric. A positive definite matrix ( )K t  is se-

lected from two possible solutions of equation (7). 

The positive definite property is established when de-

termining the conditions for the existence of optimal 

controls in the classical differential game. For this 

purpose, we introduce the Lyapunov function with a 

positive definite symmetric matrix ( )K t : 
T( ( )) ( ) ( ) ( )V z t z t K t z t . 

According to the Lyapunov theorem, the matrix 

equation (7) has a stable solution if  

 

T

T

T T

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ). 8p e

d d d
V z t z t K t z t z t K t z t

dt dt dt

d
z t K t z t z t q q z t

dt

   
     

   

 
       

 

Equation (1) with the controls (6) takes the form  

T1 1
( ) ( ) ( ) ( )n n m

p e

d
z t I I K t z t

dt r nr

 
    
  

1 .   (9) 

Due to equation (9), we write inequality (8) as   
T

T

T T

T 1 1
( ) ( ) ( )

( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) 0.

( ) n n n m

p e

p e n

n n n m

p e

K t K t I I
r nr

K t q q I z t

z t K t I I K t z t
r nr

d
z t

dt

 
      

  

      

 
     

  





1 1

1 1

In view of (7), we obtain the following condition  

for the existence of optimal controls in the differential  

game:  

T T1 1
( ) ( ) ( ) ( ) ( ) 0n n n m

p e

z t K t I I K t z t
r nr

 
    

  

1 1 .  

Obviously, this condition will hold if the bracket-

ed matrix is positive definite, i.e., 

1 1

p er nr
 .                       (10) 

This inequality can be satisfied by tuning the pa-

rameters pr  and 
er , or the penalty matrices p nR r I  

and 
e nP nr I .  

Let us formulate this result as follows. 

Theorem 3.2.  The differential game (1), (4) has a 

value if the penalty matrices R  and P  of the perfor-

mance criterion (4) satisfy the relation R Р .  

Note that under condition (10), the performance 

criterion with the controls (6) achieves the saddle 

point, i.e.,  
0 0 0

0 0

( ( ), ( ), ( )) ( ( ), ( ),

( )) ( ( ), ( ), ( ))

р е р

е р е

J z u u J z u

u J z u u

 



     

    
. 

Condition (10) leads to a logical conclusion: the 

more the pursuers are, the more successful their game 

outcome will be.  
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Theorem 3.3.  Consider a differential game with n 

pursuers and one evading attacker with the dynamics 

(1) and the performance criterion (4). Let 0 ( )( , )J t z


  

denote the minimax value achieved by 

( ( ), ( ), ( ))p eJ z u u     under the feedback optimal con-

trols. This value is   

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  , 

where ( )K t  is a symmetric positive definite matrix 

satisfying equation (7) with the right-end boundary 

condition.  

This assertion is proved in the Appendix. 

In the case 1n   (only one pursuer), the controls 

take the form   

0 0
( ) ( )

( ) ( ), ( ) ( ),
p e

p e

р e

k t k t
u t z t u t z t

r r
     

where the parameters ( )pk t  and ( )еk t  satisfy equa-

tions (7) with ( ) ( ) ( )p e mK t k t k t I     and 1n  :   

 

2 2
( ) ( ) ( ) ( ) 0,

( ) , 11

e p

p p p e p

e p p

p f pf

r rd
k t k t k t k t q

dt r r r

k t k

 
    
  



 

 

2 2
( ) ( ) ( ) ( ) 0,

( ) . 12

e p

e e p e p

e p e

e f ef

r rd
k t k t k t k t q

dt r r r

k t k

 
    
  



.  

 

2.2. Differential game with distributed information 

The main idea of constructing strategies in the dif-
ferential game with distributed information is that 
each player makes a decision based on the available 
information at a given time instant. The dynamics of 
the information available to the players (the attacker 
and pursuers) to form their controls are described by 
the sensitivity matrix (5). 

In general form, the distance between pursuer  j, 
the attacker, and the other pursuers is specified by the 
vector 

1

( ) ( ) ( ) ( ) ( ) ( )
n

рj j ij i j

i

z t x t d t x t f t y t


   .       (13) 

If the evading attacker observes the actions of sev-
eral pursuers, then the following information can be 
available to it: 

1

( ) ( ) ( ) ( )
n

е i i

i

z t e t x t y t


  .                  (14) 

Like in the paper [20], the coefficients ( )ijd t , 

( )jf t , and ( )ie t  in (13) and (14) are composed of the 

elements of the matrix (5) characterizing the mutual 
observations of the players: 

0

1

0

0

0

( )
( ) 1 ( ) ,

( )

( )
( ) ( ), ( ) .

( )

ij

j n

jl

l

j

j j j n

i

i

ij

s t
d t s t

s t

s t
f t s t e t

s t



   

 





  

The pursuers’ strategies are 

0

1

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) (15)

p

pj рj

p

n
p

j ij i j

ip

k t
u t z t

r

k t
x t d t x t f t y t

r 

  

 
    

 


 

for j = 1, 2,…, n.  

The evading attacker forms its control using the 
available information (14): 

0

1

( ) ( )
( ) ( ) ( ) ( ) ( )

n
e e

e е i i

ie e

k t k t
u t z t e t x t y t

r r 

 
     

 
 . (16) 

The parameters ( )pk t  and ( )еk t  in (15) and (16) 

satisfy equations (11) and (12) with 

( ) ( ) ( )p e nK t k t k t I     and 1n  .  

Note that these control formulas have been ob-
tained for the system dynamics (1) with the quadratic 

performance criteria (2) and (3). 
We write the expressions (15) and (16) compactly 

using the Kronecker product: 

 



0 1( ) ( ) ( ) ( ) ( )

( ) ( ) , (17)

p mu t R K t x t D t I x t

F t y t

    

 
 

 

0 1 T

T

( ) ( ) ( )

( ) ( ) ( ) . (18)

e n m

m

u t P I K t

E t I x t y t

   

    

1
. 

Here ( )K t  are solutions of equations (7), 

 
T

1( ) ( ) ( )nE t e t e t ,  
T

1( ) ( ) ( )nF t f t f t , and 

( ) ( ) n n

ijD t d t R     .  

Substituting the optimal controls (15) and (16) into 

the criterion (4) and performing some transfor-
mations, we obtain 

        

         

        

        

0

0

T

T

T

0 1
, , ( )

2

1
,

2

1
,

2

, 19

f

f

f f

t

t

t

t

z t x t y t z t Fz t

x t H D t E t x t dt

x t L D t E t y t

y t W F t y t dt

J  

   

   

  




  

where 
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            

         

       

     

     

1

T1 1

T 1

TT T 1

T

, ,

1

1 ,

m m

m m

m n m

n m m

H D t E t K t Q K t R K t K t

R K t D t I – D t I K t R K t

D t I K t K t D t I

n F t I I K t P

I K t F t I



 





   

      

       

        

  
 

 



        

         

     

       

T

1 1

T T
T T

T
T 1 T

, , 2

2

2 2

,

m

m

m m

m

n

n m

m

n

L D t E t F t D t I

K t R K t F t I K t R K t

F t I I Q n E t I

I K t P I K t

 



    

     

     





   



 

    
   

1

1 1

 

      

     

       

T

1

T
1

,

.

m

m

m

T T

n mn

W F t K t nQ F t I

K t R K t F t I

n I K t P I K t





     

 

   







1 1

 

Clearly, the integrand of the criterion (19) consid-
ers both the positions of the pursuers and evader and 
the mutual disposition of the pursuers and evader. 
Note that under the optimal controls, the value of this 
functional depends on the number of players and the 

elements  ijd t ,  if t , and  ie t
 

of the matrices 

 D t ,  F t , and  E t , respectively. In other words, 

the value depends on what information is available to 
the players during the game and the type of availabil-
ity.   

In the game with one pursuer, one evading attack-
er, and global information (the classical differential 
game; see subsection 2.1), the parameters are 1n  , 

( ) 0D t  , and ( ) 1E t  . As a result, the controls (17) 

and (18) become the same as in (6). In this case, the 
criterion takes the form  

     

          

0

T

1 1

0 1 1

2 2

.

( ( ))
ft

f f
t

z t Fz t z t

Q K t R K t K t P K t z t dt

J z t

 

   

  


 

According to Theorem 3.3, 0 ( , ( ))J t z t


 is given by  

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  . 

Consider a particular case of the differential game 
with distributed information and the binary sensitivity 

matrix (5). The element ( )ijs t  of this binary matrix 

indicates whether player i observes player j at a time 

instant t or not: if ( ) 1ijs t  , then player i observes 

player j; otherwise ( ( ) 0ijs t  ), player i does not ob-

serve player j. Since each player observes itself, the 
diagonal elements of the matrix (5) are constant and 
equal to 1.  

Case 1. Let pursuer j not observe the evading at-

tacker, i.e., 0 0,  0j js f  . From the expression (17) 

we therefore have 

0

1

( )
( ) ( ) ( ) ( )

n
p

pj j ij i

ip

k t
u t x t d t x t

r 

 
   

 
 . 

This means that pursuer j will follow the nearest 
observable pursuers.  

Case 2. Let pursuer j observe the evading attacker, 

i.e., 0 1,  1j js f  , and let this player have no infor-

mation about the other pursuers, i.e., 0ijd  . From 

the expression (16) we therefore have  

0
( )

( ) ( ) ( )
p

pj j

p

k t
u t x t y t

r
     . 

This means that pursuer j will try to intercept the 
evading attacker independently.    

Consider the evading attacker’s strategy (18), not-
ing the following: if the evader observes several pur-
suers in its radius of sensitivity, then its control will 
be intended to “escape” the center of mass of all the 
pursuers detected.  

3. DIFFERENTIAL GAME WITH NOISE  

Consider a situation when the evading attacker ar-
tificially jams the pursuers to gain an advantage in the 
differential game of pursuit. This means that the pur-
suers will receive information about the evader’s posi-
tion with some noise. Hence, the controls constructed 
by the pursuers will contain this noise. Thus, the tra-
jectories along which the pursuers will intercept the 
evader are suboptimal. In addition, the attacker con-
structs its strategy for all pursuers it detects, trying to 
escape the center of mass of all pursuers. Since their 
positions are subjected to noise, the attacker’s trajec-
tory will also contain a noise component. Note that 
the evading attacker will not be affected by the noise 
it creates, and its control strategy still depends only on 
the pursuers’ positions.   

The controls of the pursuer and attacker in the dif-
ferential game with global information are given by 

( )
( ) ( ), ( ) ( )

p

p e

p

k t d
u t z t u t y t

r dt
   . 

Let ( )n t  be the noise created by the evading at-

tacker, representing the white noise with the mean 

 ( ) 0M n t   and variance T ( ) ( )M n t n     

( ) ( )N t t   . Under the new conditions in the dif-

ferential game, the pursuers will detect the evading 

attacker along the trajectory 
*( ) ( ) ( )y t y t n t  . Note 

that the presence of noise may affect the condition of 
interception (the pursuers’ objective in the game); see 
Assumption 2.3. We therefore introduce a new condi-
tion of interception:  
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2
*

1( ) εjE z t  
  

, 

where 
2

*

1( )jE z t 
  

 is the root-mean-square distance 

between the attacker and pursuer j, or equivalently, 

2

( ) ( ) ε.jE z t n t  
  

 Due to the white noise created 

by the attacker, we have Т ( ) ( ) 0jE n t z t    , and the 

condition of interception takes the form  

2
( ) ε .E z t N   

 
 

If N   , the objective of interception cannot be 

accomplished.  

We write the control strategies in the classical dif-

ferential game:  

 *
( ) ( )

( ) ( ) ( ) ( )
p p

p

p p

k t k t
u t z t z t n t

r r
     . 

Also, we write the control strategies in the differ-

ential game with distributed information: 

1

*

1

( )
( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) .

n
e

e i i

ie

n
p

pj j ij i j

ip

k t
u t e t x t y t

r

k t
u t x t d t x t f t y t

r





 
   

 

 
    

 




 

If a pursuer does not detect the evading attacker 

(therefore constructing its control strategy based on 

the pursuers detecting the attacker), its trajectory will 

still have a noisy component due to the noisy trajecto-

ries of the latter pursuers. 

4. EXAMPLE 

4.1. Classical differential game 

Let us simulate a differential game in which each play-

er has complete information (game with global infor-

mation). Assume that there are one attacker and three pur-

suers. Then the game dynamics with the constructed con-

trols are described by an ordinary linear differential equa-

tion of the form 

T

1 1 1 0

T

2 2 2 0

( )
( ) ( ( ) ( )), ( )  [ 3,  0] ,

( )
( ) ( ( ) ( )), ( )  [3,  0] ,

p

p

p

p

k td
x t x t y t x t

dt r

k td
x t x t y t x t

dt r

    

   

 

 

T

3 3 3 0

1 2 3

T

0

( )
( ) ( ( ) ( )), ( ) [4,  1] ,

( ) 1
( ) ( ) ( ) ( ) ( ) ,

3

( )  [0,  3] .

p

p

e

e

k td
x t x t y t x t

dt r

k td
y t x t x t x t y t

dt r

y t

   

 
     

 



 

Here the parameters ( )pk t  and ( )ek t  satisfy the equa-

tions 

2

2

1 2
( ) ( ) ( ) ( ),

( ) 1 / ,

1 2
( ) ( ) ( ) ( ),

( ) .

p p p p e

p e

p f pf

e e e p e

e p

e f ef

d
k t q k t k t k t

dt r r

k t k

d
k t q k t k t k t

dt r r

k t k

   

  

   

  

 

For the performance criterion (4), we choose the pa-

rameters 

1,  2,  1,  2,  = 20,  and 0.05. p e p e pf efr r q q k k     For 

the condition of interception, we choose the parameter 

ε 0.04 . Let the game of pursuit occur for  0,4t .  

The variations of the parameters ( )pk t  and ( )еk t  over 

time are shown in Fig. 1.  

 

 

Fig. 1. Variations of parameters  kp(t) and ke(t). 

 

The graphs of the transient processes in the problems 

are presented below. Figure 2 shows the trajectories of the 

pursuers and evading attacker in the classical game with 

and without noise. In both of the games, the attacker has 

been intercepted: the condition 1 1( ) ε, 4z t t s  , has 

been satisfied at 1 3.58t   (Fig. 2a) and 
1 3t   (Fig. 2b), 

where time is measured in conditional machine units.  

The classical differential game with centered noise has 

been simulated using the original model with the same ini-

tial conditions.  
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Fig. 2. Transient processes in simple game of pursuit:  
(a) without noise (game ends at 3.58) and (b) with noise (game ends at 3). 

 

4.2. Differential game with distributed information 

Suppose that the initial position of the players is the 

same as in subsection 4.1. We simulate the differential 

game in which each player has limited information about 

the other players. Let the sensitivity matrix change three 

times during the game, which can be expressed as follows: 

1 2 3

1 0 0 1 1 0 1 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1 1 1
,  ,  .

0 0 1 1 1 0 1 1 1 1 1 1

1 0 0 1 1 0 0 1 1 1 1 1

S S S

     
     
       
     
     
     

In the first period, only one pursuer detects the attacker, 

and the two other pursuers, detecting the first pursuer only, 

follow it. In the next period, two pursuers detect the evad-

ing attacker and try to intercept it, while the remaining pur-

suer follows them. In the final period, each of the players 

detects the others, and the differential game turns into a 

game with global information (classical differential game). 

Like in subsection 4.1, we adopt the differential game 

with distributed strategies as the basis model and add noise. 

All operations to obtain a solution are performed by analo-

gy with the previous subsection. Figure 3 shows the trajec-

tories of the pursuers and evader in the game with distribut-

ed strategies, without noise and with noise. 
 

 
 

 
 

Fig. 3. Transient processes in game of pursuit with distributed infor-
mation:  
(a) without noise (game ends at 3.88) and (b) with noise (game ends at 4). 

 

The graphs in Fig. 3 show the instants when different 

pursuers join the pursuit of the evading attacker (when the 

attacker enters their zones of sensitivity, i.e., at the instants 
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of detection). Figure 3a corresponds to the successful inter-

ception of the attacker, i.e., the condition 
2

1 1( ) ε, 4jz t t s  , is satisfied for 
1 3.88t  . Figure 3b 

corresponds to the unsuccessful interception of the attacker, 

i.e., the condition
2

( ) εz t   holds for all 
0 ft t t  , and 

the game ends upon reaching the prescribed duration 

4ft t  .  

 

CONCLUSIONS 

This paper has considered a differential game of 

pursuit with several players. One player (attacker) 

penetrates some space, and several other players (pur-

suers) appear simultaneously to intercept the attacker. 

Upon detecting the pursuers, the attacker tries to 

evade them. The dynamics of each player are de-

scribed by a time-invariant linear system of a general 

type. The strategies of the pursuers and evading at-

tacker have been constructed within two subproblems: 

(1) all players have complete information about the 

state of all game participants, and (2) the pursuers 

have incomplete information about the evading at-

tacker actively opposing them. The distributed strate-

gies and some particular cases of the differential game 

of pursuit have also been considered. The main idea 

of constructing strategies for this game is that each 

player makes a decision based only on the available 

information at a given time. The simulation results 

have been provided to illustrate the theory. 
 

APPENDIX 

Proof of Theorem 3.1. Let us write the system’s Ham-
iltonian 



   

T T

T T

1
( , , , ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( ) .

p e p e p p p

e n e n e np e

Н z u u z t q q z t r u t u t

nr u t u t t u t u t

      

       1 1 1

 

Here, λ( )t  is the conjugate variable [22], which satis-

fies the equation  
Т

( , , , )
( ) ( )

p e

p e

Н z ud
t q q z t

dt z

u  
           


  (A.1) 

with the boundary condition 
T ( ) ( )1

( ) ( )
2

f pf ef f

f pf ef f

z t k k z t
t k k z t

z

         
. 

The optimal controls are the stationary points of the 
Hamiltonian: 

2

2

( , , , ) ( , , , )
0, 0,

p e p e

p

p р

Н z u Н z u
r

u u

u u 
  

 

 
 (A.2) 

2

2

( , , , ) ( , , , )
0, 0

p e p e

ep

e e

Н z u Н z u
nr

u u

u u 
   

 

 
. (A.3) 

Conditions (A.2) and (A.3) determine the optimal con-

trols  

T0 01 1
( ) ( ), ( ) ( ( ))n

p e

р eu t t u t t
r nr

     1 .  (A.4) 

Therefore, the variable λ( )t  is the solution of the two-

point boundary value problem (the Euler–Lagrange equa-

tions)  

T

0 0

1 1
( ) ( ) ( ),

( ) ,

( ) ( ),

( ) ( ).

m n m

p e

p e

f pf ef f

d
z t I I t

dt r n r

z t z

d
t q q z t

dt

t k k z t

 
     
  



     

    

1

 

The auxiliary variable λ( )t  will be calculated using the 

sweep method [22]. Let us find λ( )t  in the form  

λ( ) ( ) ( ),t K t z t                     (A.5) 

where ( )K t  is an unknown matrix. The total derivative of 

the expression (A.5) is given by  

 T

( ) ( ) ( ) ( ) ( )

1 1
( ) ( )

( ) ( ) ( ) . (A.6)

p e

n n m

d d d
t K t z t K t z t

dt dt dt

d
K t K t I

dt r nr

I K t z t

   
      

   

  
      

  

   1 1

 

Equalizing the expressions (A.1) and (A.6), we obtain: 

T1 1
( ) ( ) ( ) ( )

, ( ) .

m n n m

p e

p e m f pf ef m

d
K t K t I I K t

dt r nr

q q I K t k k I

 
        

  

         

1 1

 

Due to (A.4) and (A.5), the equations take the form: 

0

0 T

1
( ) ( ) ( ),

1
( ) ( ) ( ) ( ).

p

p

e n m

e

u t K t z t
r

u t I K t z t
nr

 

   1

  

 

Proof of Theorem 3.3. Consider the integrand of the 

performance criterion  

 

   

T

TT T

T

1
( ( ), ( ), ( )) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

( ) ( ) .

f

p e f f

t

p p n e

t

n e n e

J z u u z t Fz t

z t Qz t u t Ru t u t

P u t P u t dt

     

    

  

 1

1 1

 

Substituting T ( ) ( ) ( ) /d z t K t z t dt 
 

 into this integrand 

and compensating the result outside the integral by 

T T0.5 ( ) ( ) ( ) ( ) ( ) ( )
f f f

z t K t z t z t K t z t 
 

, we have: 
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f
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t
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t

f f f
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z t K t z t z t K t z t

z t Qz t u t Ru t

u t P u t dt

dK t
z t z t

dt

dz t dz t
K t z t z t K t

dt d

    

    

  

   

  
   

 

 
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 





1 1

 . A.7dt
t

 
 
 

 

Note that under the optimal controls 

 1 1 T0 0( ) ( ) ( ), ( ) ( ) ( )nр eu t R K t z t u t P K t z t     1 , (A.8) 

where  

 

1 1 T( ) ( ) ( )

( ) 0, ( ) , A.9

n n

f

d
K t K t R P

dt

K t Q K t F

       

   

1 1
  

the system’s dynamics are described by 

1 1 T

.
0 0

( ) ( ) ( ) ( ),

( ) ( .10)

n m

d
z t R P I K t z t

dt

z t z A

      



1
.  

Recall that 0 ( , ( ))J t z t


 denotes the minimax value of 

the criterion ( ( ), ( ), ( )).p eJ z t u t u t  
Substituting (A.8) and 

(A.10) into (A.7) and taking (A.9) into account, we finally 
arrive in 

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  . ♦ 
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